Observables predicted by HF theory • Total binding energy of the nucleus in its ground state ⇒ separation energies for p / n (= BE differences) • Ground state density distribution of protons and neutrons ⇒ mean square radii ⇒ EM multipole moments (for deformed g.s. density) • single particle levels (energies, angular momenta, parity) ⇒ shell gaps (explains magic numbers) ⇒ Fermi levels for p / n NOTE: HF is a ground state theory. For excited states we need Random Phase Approximation = RPA 1/5/16 VolkerOberacker,VanderbiltUniversity 1 Static Hartree-Fock: numerical implementation Represent wave functions for all A nucleons on 3-D Cartesian lattice Grid points: Wave function on the lattice becomes a complex-numbered array of dimension 1/5/16 VolkerOberacker,VanderbiltUniversity 2 Basis-Splines (7th order), periodic boundary condition Expand wave function in terms of products of Basis-Spline functions 1/5/16 VolkerOberacker,VanderbiltUniversity 3 Stable nucleus 16O HFB-2D calculation, SLy4 N-N interaction 16 16 O protons 20 20 continuum 0 1p1/2 1p3/2 V(r) -20 -40 -40 -60 -60 1/5/16 2 4 r (fm) 1p1/2 1p3/2 -20 1s1/2 -80 0 continuum V(r) 0 O neutrons 6 8 -80 0 VolkerOberacker,Vanderbilt 1s1/2 2 4 r (fm) 6 8 4 Neutron dripline nucleus 24O (T1/2 = 65 ms) HFB-2D calculation, SLy4 N-N interaction 24 24 O protons 20 20 continuum -20 0 V(r) 1/5/16 1s1/2 -40 1s1/2 -60 -60 -80 0 2s1/2 1d5/2 1p1/2 1p3/2 -20 1p1/2 1p3/2 -40 continuum V(r) 0 O neutrons 2 4 r (fm) 6 8 -80 0 VolkerOberacker,Vanderbilt 2 4 r (fm) 6 8 5 48Ca: HF predicts spherical density distribution, in agreement with exp. data 620 static iterations, CPU time = 2m 21s (16 INTEL Xeon CPUs) Convergence of total binding energy ΔE / E = -5.7 × 10-9 HF binding energy = -431.10 MeV exp. binding energy = -416.00 MeV accuracy = 3.4% 1/5/16 V.Oberacker,Vanderbilt 6 Charge densities for various nuclei (electron scattering data vs. theory) Ref: J.W. Negele, Rev. Mod. Phys. 54, 913 (1982) 1/5/16 VolkerOberacker,VanderbiltUniversity 7 rms charge radii for several isotope chains. HF calculation with different Skyrme forces, compared to exp. data (filled and open diamonds) M. Bender, P. Heenen, and P.G. Reinhard, Rev. Mod. Phys. 75, 122 (2003) 1/5/16 VolkerOberacker,VanderbiltUniversity 8 HF neutron single-particle energies, using several Skyrme forces, compared to experiment M. Bender, P. Heenen, and P.G. Reinhard, Rev. Mod. Phys. 75, 122 (2003) 1/5/16 VolkerOberacker,VanderbiltUniversity 9 HF binding energies, calculated with different Skyrme forces. Plotted is energy difference between experiment and theory. M.Bender,P.Heenen,andP.G.Reinhard, Rev.Mod.Phys.75,122(2003) 1/5/16 VolkerOberacker,VanderbiltUniversity 10 249Bk: HF predicts positive quadrupole + hexadecapole deformation, in agreement with exp. data 6,300 static iterations, CPU time = 2h 50m (16 INTEL Xeon CPUs) Convergence of total binding energy ΔE / E = 4.2 × 10-10 HF binding energy = -1,875.11 MeV exp. binding energy = -1,864.02 MeV accuracy = 0.6% 1/5/16 V.Oberacker,Vanderbilt 11 relative energy change, abs (dE / E) 10 10 -4 10 10 10 static Hartree-Fock iteration -5 249 Bk 97 -6 -7 10 10 10 -3 -8 -9 -10 -11 10 0 1/5/16 2000 4000 number of iterations V.Oberacker,Vanderbilt 6000 12 Constrained Hartree-Fock calculations: collective energy surface Ref: Ring & Schuck, chapter 7.6 Add electric multipole operators Qi to variational principle ' * HF HF HF HF δ ) < Φ0 | H | Φ0 > −∑ λi < Φ0 | Qi | Φ0 > , = 0 ( + i Lagrange multipliers € The values of Lagrange multipliers are determined from the constraint that the electric multipole operators have a given expectation value < Φ0HF | Qi | Φ0HF >= qi given As a result of constraints, one obtains the “collective energy surface” E(qi ) € 1/5/16 or more explicitly E(q20 ,q22 ,q30 ,q40 ,...) VolkerOberacker,VanderbiltUniversity 13 HF calculation with quadrupole constraint, for chain of gadolinium isotopes, using several Skyrme forces. upper figure: collective potential energy surface lower figure: ground state deformation, compared to exp. data M. Bender, P. Heenen, and P.G. Reinhard, Rev. Mod. Phys. 75, 122 (2003) 1/5/16 VolkerOberacker,VanderbiltUniversity 14 3-D Skyrme HF calculation, with quadrupole constraint: double-humped fission barrier for 240Pu 1/5/16 VolkerOberacker,VanderbiltUniversity 15 “Cranked” Hartree-Fock calculations: rotational bands Ref: Ring & Schuck, chapter 7.7 Add total angular momentum operator to variational principle δ [ < Φ0HF | H | Φ0HF > −ω ( I ) < Φ0HF | J x | Φ0HF >] = 0 Lagrange multiplier = cranking frequency The cranking frequency ω(I) depends on ang. mom. quantum number I; its value is determined from the constraint condition < Φ0HF (ω ( I )) | J x | Φ0HF (ω ( I )) >= I(I +1) As a result of this constraint, one obtains “rotational bands” € E(I) which agree much better with experiment than simple collective models (microscopic moments of inertia change as function of ang. momentum!) 1/5/16 VolkerOberacker,VanderbiltUniversity € 16 Cranked HF calculation in 3-D, for two Skyrme forces Ref: M. Yamagami and K. Matsuyanagi, Nucl. Phys. A672 (2000) 123 1/5/16 VolkerOberacker,VanderbiltUniversity 17 Cranked HF calculation in 3-D, for two Skyrme forces Ref: M. Yamagami and K. Matsuyanagi, Nucl. Phys. A672 (2000) 123 1/5/16 VolkerOberacker,VanderbiltUniversity 18
© Copyright 2025 Paperzz