University of Texas at El Paso DigitalCommons@UTEP Departmental Technical Reports (CS) Department of Computer Science 12-2016 Fuzzy Pareto Solution in Multi-criteria Group Decision Making with Intuitionistic Linguistic Preference Relation Bui Cong Cuong Institute of Mathematics, Vietnam Academy of Science and Technology, [email protected] Vladik Kreinovich University of Texas at El Paso, [email protected] Le Hoang Son VNU University of Science, Vietnam National University, [email protected] Nilanjan Dey Techno India College of Technology, [email protected] Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep Part of the Computer Sciences Commons Comments: Technical Report: UTEP-CS-16-88 To appear in International Journal of Fuzzy System Applications Recommended Citation Cuong, Bui Cong; Kreinovich, Vladik; Son, Le Hoang; and Dey, Nilanjan, "Fuzzy Pareto Solution in Multi-criteria Group Decision Making with Intuitionistic Linguistic Preference Relation" (2016). Departmental Technical Reports (CS). 1091. http://digitalcommons.utep.edu/cs_techrep/1091 This Article is brought to you for free and open access by the Department of Computer Science at DigitalCommons@UTEP. It has been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. Fuzzy Pareto Solution in multi-criteria group decision making with intuitionistic linguistic preference relation Bui Cong Cuong Institute of Mathematics, Vietnam Academy of Science and Technology, Hanoi, Vietnam [email protected] Vladik Kreinovich Department of Computer Science, University of Texas at El Paso, TX 79968, USA [email protected] Le Hoang Son * VNU University of Science, Vietnam National University, Hanoi, Vietnam [email protected] Nilanjan Dey Techno India College of Technology, Kolkata, India [email protected] *Corresponding author. Tel.: (+84) 904.171.284 Abstract: In this paper, we investigate the multi criteria group decision making with intuitionistic linguistic preference relation. The concept of Fuzzy Collective Solution (FCS) is used to evaluate and rank the candidate solution sets for modeling under linguistic assessments. Intuitionistic linguistic preference relation and associated aggregation procedures are then defined in a new concept of Fuzzy Pareto Solution. Numerical examples are presented to demonstrate computing procedures. The results affirm efficiency of the proposed method. Keywords: Fuzzy Collective Solution; Fuzzy Pareto Solution; Group Decision Making; Intuitionistic Fuzzy Sets; Intuitionistic Linguistic Preference Relation. 1. Introduction Group decision making (GDM) is useful to evaluate and judge the best solution among alternatives through a social group. GDM, in a fuzzy environment, contains four steps (Herrera, Herrera-Viedma & Verdegay, 1996): i) unifying evaluations from experts; ii) aggregating their opinions to a final score for each alternative represented by a linguistic label (Chen & Hwang, 1992; Cheng, 1999; Delgado, Verdegay & Vila, 1992; Fodor & Roubens, 2013; Herrera & Herrera-Viedma, 1997; Hwang & Lin, 2012); iii) ranking the labels; and iv) selecting the preferred alternative by group decision. It has been the fact that using linguistic labels makes experts’ judgment more reliable and informative than using numeric scores. Fuzzy Collective Solution (FCS) is widely used to 1 2 Bui Cong Cuong, Vladik Kreinovich, Le Hoang Son, Nilanjan Dey evaluate and rank the candidate solution for a model under linguistic assessments. The existing algorithms for FCS provided the tool for aggregation in GDM with intuitionistic preference relations. Intuitionistic fuzzy set (IFS) is an extension of Zadeh’s fuzzy set (1965) characterized by a membership and a non-membership function (Atanassov, 1986, 1999). In many complex decision making problems, the decision can be represented by IFS for better modelling of imprecise and uncertain data. Recently, some researchers applied IFS to GDM. Gau and Buehrer (1993) introduced the vague set, which is an equivalence of IFS. Hong and Choi (2000) developed approximate techniques for multi-attribute decision making using minimum and maximum operators. Szmidt and Kacpzyk (2002) proposed the intuitionistic fuzzy core and consensus winner in group decision making with intuitionistic (individual and social) fuzzy preference relations. Xu and Yager (2006) developed the intuitionistic fuzzy weighted geometric operator, fuzzy ordered and fuzzy hybrid geometric operator extending the traditional and ordered weighted geometric operator in the environment where given arguments are represented by IFSs. Our contribution for GDM with intuitionistic preference relation is the new approach using the Pareto solution of the optimization theory and some aggregation procedures based on FCS to solve the model. This paper is organized in 8 sections with the first section is the introduction. Section 2 briefly reviews group decision making model and Low-operator. Section 3 introduces the concept of Fuzzy Collective Solution. Some computing algorithms for FCS of the multi-criteria problem are given in the Section 4. In section 5, intuitionistic linguistic preference relations are defined. Section 6 is devoted to a new concept of Fuzzy Pareto Solution (FPS) and some aggregation procedures for the FPS in the problems with intuitionistic linguistic preference relations. Section 7 shows an example to illustrate the approach. The final section is conclusion of this paper. 2. A group decision making model 2.1. A GDM model under linguistic In this paper, let us consider the following model under linguistic assessments. Assume X x1 , x2 ,..., xn is a finite set of alternatives and E ={e1, …, em} is a finite set of experts. We assume that there exists a distinguished person, say the manager, who assigns an important degree w(ek ) w(k ) for each expert such that 0 w(k ) 1, and k w(k ) 1 . Let S st , t 1,..., T be a finite and totally ordered linguistic-labels set. Assume that each expert ekE provides his/her opinions on X by mean of a linguistic preference relation pk : X X S , where pk (i, j ) pk ( xi , x j ) S , represents the linguistically assessed preference degree of alternative x i over xj. For example, we consider the following linguistic labels S [12]: Fuzzy Pareto Solution in multi-criteria group decision making 3 S = {I, EU ,VLC, SC, IM, MC, ML, EL, C} where they are trapezoidal fuzzy numbers on [0,1]. I Impossible (0, 0, 0, 0); EU Extremely-unlikely (0.00, 0.01, 0.02, 0.07); VLC Very-low-chance (0.04, 0.10, 0.18, 0.23); SC Small-chance (0.17, 0.22, 0.36, 0.42); IM It- may (0.32, 0.41, 0.58, 0.65); MC Meaningful-chance (0.58, 0.63, 0.80, 0.86); ML Most-likely (0.72, 0.78, 0.92, 0.97); EL Extremely-likely (0.93, 0.98, 0.99, 1); C Certain (1, 1, 1, 1); 2.2. A modification of LOWA operator Yager (1998) defined the ordered weighted averaging (OWA) operator. The LOWA operator is based on OWA and the convex combination of linguistic labels (Llamazares, 2007). However, in many real cases, the weights of experts were not considered. Thus, we are concerning the aggregation problem in which the weights of experts are unknown. Definition 1. Let a = {a1, ..., am} be a set of linguistic-labels to aggregate, and b is the associated ordered labels vector, i.e. b = {aim, ai(m – 1), …, ai1}, such that aim ai(m – 1) ... ai1. The Low operator is defined as Low(a, w) C (wim , aim ), (1 wim , Low(a ' , w' )) (1) where w= [w1, ..., wm], is a weight vector such that, wi [0,1] and I wi = 1, a’={ai(m-1), ..., ai1}, w’={w’i(m-1), ...,w’i1}, w’j = wj/(1- wim) . (2) C is the convex combination operator of 2 labels sj , si, j i with wj>0, wi>0, wj+wi =1, C{(wj,sj).(wi,si)} = sk, (3) where k = i +round( wj.(j-i)), where round is the usual round operator. 2.3. Multi-criteria group decision making model In our model, assume that there is a finite set of criteria: C= {C1, C2, ..., CL}. Respect to each criterion Cl, each expert ek E provides his/her opinions on X by mean of a linguistic preference relation pkl : X X S , where pkl (i, j ) pkl ( xi , x j ) S (4) is the linguistically assessed preference degree of alternative xi over xj. Moreover, assume that there are important weights of criteria {l , l=1,2,..., L}, such that 0 l 1, and ll = 1. In our model we assume that pkl : X X S is soft-recipodal in the sense: (i) pkl (i, i) sT 1/ 2 ,for all i=1,…,n (5) 4 Bui Cong Cuong, Vladik Kreinovich, Le Hoang Son, Nilanjan Dey (ii) pkl (i, j ) sT 1/ 2 , then Let P , k 1,..., m k pkl ( j, i) sT 1/ 2 be (i, j ), i 1,...n, j 1,..., n linguistic , and (6) preference for Wi , j st k w(k ) : p k (i, j ) st . each relations. For every st S , we define (7) This value is the sum of individual importance degrees of experts, who coincide to assign the linguistic label st as preference value of the alternative xi over alternative xj . In the next section, we will define the concept of Fuzzy Collective Solution (FCS) and apply to evaluate and to rank the alternatives set. 3. Fuzzy Collective Solution 3.1. Notions The concept of fuzzy collective solution is similar to the concept of aggregated dominance degrees of alternatives. For each pair (xi,xj), the linguistic dominance degree is defined by E ( xi , x j ) Low(S ,U ) where (8) U uT ,..., u1 , ut Wij st for t=1,...,T. (9) Definition 2. The fuzzy collective solution (FCS) is a fuzzy set on the alternatives set X FCS fcs( x1 ) / x1 , fcs( x2 ) / x2 ,..., fcs( xn ) / xn (10) where the membership degree of the alternative xi is calculated as follows: fcs( xi ) Low( S ,V ) where (11) V vT ,..., v1 , for t = 1,..., T, vt # j : E ( xi , x j ) st n 1 . (12) 3.2. Aggregated Fuzzy Collective Solution Now, we give a notion for aggregation of FCS in multi-criteria decision making problems. Suppose that for each criterion Cl, we obtained the corresponding fuzzy collective solution: FCSl fcsl ( x1 ) / x1 ,..., fcsl ( xn ) / xn l= 1, 2, ..., L. Definition 3. The aggregated fuzzy collective solution (aFCS) is a fuzzy set on the alternatives set X aFCS afcs( x1 ) / x1 , afcs( x2 ) / x2 ,..., afcs( xn ) / xn (13) Fuzzy Pareto Solution in multi-criteria group decision making 5 where the membership degree of the alternative xi is calculated as afcs( xi ) Low(S ,U ) , where i=1,…, n (14) U uT ,..., u1 , U t l l : fcs( xi ) st , t=1, ...T (15) Note that aFCS is a type-2 fuzzy set on X. 4. Some computing procedures using FCS In the following computing procedures, we use the linguistic preference relations { pkl , k 1,..., m, l 1,..., L} , the experts’ important weights w(k ) : ek E , such that 0 w(k ) 1 , and l , l 1,..., L , such that k w(k ) 1 and the criteria’s important weights 0 l 1 , and l l 1. Now we consider some computing procedures using FCS for the model. Algorithm 1: Step 1. 1a. For each criterion Cl, using { pkl , k 1,..., m} and where where w(k ) : ek E El El (i, j ) E ( xi , x j ) , calculate the linguistic dominance degrees , j =1,…,n the weights i (16) El ( xi , x j ) Low( S ,Ul ) , Ul ulT ,..., ul1 ult Wij (st ) w(k ) : pkl (i, j ) st , (17) t=1,...,T (18) k El El ( xi , x j ) , calculate the fuzzy collective solution FCSl fcsl ( x1 ) / x1 , fcsl ( x2 ) / x2 ,..., fcsl ( xn ) / xn 1b. Using the (19) as in the Definition 2. Step 2. Using the calculate FCSl , l 1,..., L and the important weights the aggregated fuzzy collective solution (aFCS) aFCS afcs( x1 ) / x1 , afcs( x2 ) / x2 ,..., afcs (xn ) / xn , as in the Definition 3. Step 3. l , l 1,..., L , Classify the set of alternatives X into subsets (20) 6 Bui Cong Cuong, Vladik Kreinovich, Le Hoang Son, Nilanjan Dey X t xi : afcs( xi ) st , with t = 1, ... , T Rank the non-empty sets Xt X t' (21) iff t t ' , and therefore, the solution is the set X t* , where t * max t : X t , st S . Algorithm 2: Step 1. For each criterion Cl, calculate the linguistic dominance degrees as in (16). El El ( xi , x j ) , i,j =1,…,n, l=1,…, L Step 2. 2.a. Using {El , l 1,..., L} and the important weight totally social opinion relation: Q q(i, j ) q( xi , x j ) , i , j = 1,…,n where q( xi , x j ) Low(S ,U q ) , where l , l 1,..., L , calculate the U q uqT ,..., uq1 (22) (23) uqt Wijq (st ) l l : El (i, j ) st , t=1,...,T (24) 2.b. Calculate the fuzzy collective solution according to the totally social opinion relation Q FCSQ fcsQ ( x1 ) / x1 , fcsQ ( x2 ) / x2 ,..., fcsQ ( xn ) / xn (25) as in Definition 2. Step 3. Classify the alternative set X into subsets X t xi : fcsQ ( xi ) st , t = 1, ..., T (26) and choose the solution as in the step 3 of the Algorithm 1. Algorithm 3: Step 1. 1a. For each expert ek , using { pkl , l 1,..., L} and the important weights l , l 1,..., L , calculate the relatively dominance degrees F k according to expert ek as F k F k (i, j ) F k ( xi , x j ) , where where i, j =1,…,n F k ( xi , x j ) Low(S ,U k ) (27) U k [uTk ,..., u1k ] where utk l l : pkl (i, j ) st , t=1,...,T k k 1b. Using F , calculate the fuzzy evaluation FE according to the expert ek (28) Fuzzy Pareto Solution in multi-criteria group decision making FE k fek ( x1 ) / x1 ,..., fek ( xn ) / xn 7 (29) with the membership degree of the alternative xi is calculated as fek ( xi ) Low(S ,Vk ) , where Vk [vT ,..., v1 ] , i=1,…, n (30) vt j : F k ( xi , x j ) st , j i Step 2. Using the fuzzy evaluations n 1 ,t=1,...,T FE , k 1,..., m k (31) and the weights w(k ) : ek E , calculate the aggregated fuzzy evaluation (aFE), which is a fuzzy set on the alternatives set X: aFE afe( x1 ) / x1 ,..., afe( xn ) / xn , (32) as in Definition 3. Step 3. Classify the set of alternatives X into subsets X t xi : afe( xi ) st , t = 1, ..., T (33) and choose the solution as in the step 3 of the Algorithm 1. 5. Intuitionistic Linguistic Preference Relation 5.1. Intuitionistic Fuzzy Sets Definition 4 (Atanassov, 1986). Let Y be a universe of discourse. Then an intuitionistic fuzzy set (IFS) A (( A ( y), A ( y )) / y ) y Y (34) is characterized by a membership function A : Y [0,1], and a non-membership function A : Y [0,1], where the numbers with the condition 0 A ( y) A ( y) 1 for all y Y , A ( y) and A ( y) represent, respectively, the degree of membership and the degree of non-membership of the element y to the set A. Definition 5 (Xu, 2007). Let X x1 , x2 ,..., xn . An intuitionistic preference relation B on the set X is represented by a matrix: B bij nn where bij ( ( xi , x j ), ( xi , x j )) /( xi , x j ) , for all i, j 1, 2,..., n (35) 8 Bui Cong Cuong, Vladik Kreinovich, Le Hoang Son, Nilanjan Dey where ij ( xi , x j ) [0,1] is the preference degree of xi ij ( xi , x j ) [0,1] in comparing with x j and is the non-preference degree of xi in comparing with In [33], Xu supposed that ij ( xi , x j ) and ij ( xi , x j ) xj . satisfy the following condition: 0 ij ij 1, ji ij , ji ij , ii ii 0.5 , for all i, j 1, 2,..., n . (36) Next, we will define the intuitionistic linguistic preference relation and will present a new approach to solve the group decision problems with intuitionistic linguistic preference relations. 5.2. Intuitionistic linguistic preference relation Definition 6. Let X x1 , x2 ,..., xn be an alternatives set. Let S be a finite and totally ordered linguistic labels set: S= {st , t=1,..., T} where T is an odd number. An intuitionistic linguistic preference relation P on X is a matrix P pij nn where pij ( ( xi , x j ), ( xi , x j )) /( xi , x j ) ,for all i, j 1, 2,..., n (37) where ij ( xi , x j ) S with x j and is the linguistic preference degree of xi in comparing ij ( xi , x j ) S comparing with is the linguistic non-preference degree of xi in xj . Definition 7. (Soft-reciprocal condition) An intuitionistic linguistic preference relation P on the set X is said to be soft-reciprocal if ij ( xi , x j ) ST 1 , then ji ( x j , xi ) ST 1 and ij ( xi , x j ) ST 1 2 , 2 2 for all i, j 1, 2,..., n (38) Note 1. This condition on preference relation is much weaker than other supposed conditions in the papers on decision making problems using preference relations. For example see (Xu, 2006). 6. Fuzzy Pareto Solution In our approach, we need the Pareto Solution concept of Optimization Theory (Tuy, 1998). Fuzzy Pareto Solution in multi-criteria group decision making 9 6.1. Pareto Solution in Optimization Theory Let D . Let f : D R be a real function, i.e. for each n We have xD , f ( x) ( f1 ( x), f 2 ( x),..., f j ( x),..., f n ( x)) . (39) Definition 8 (Pareto Solution). Consider the following optimization problem f(x) max subject to xD . x* D is a Pareto solution, if there not exists x ' D such that A f ( x*) f ( x ') and for any f ( x*) f ( x ') , i.e., (40) x ' D , if f j ( x*) f j ( x ') for some j, then there is k j such that f k ( x ') f k ( x*) . A generalization of this concept is the following. 6.2. Generalized Pareto Solution Let D , Si , for i 1, 2..., n be totally ordered sets, S S1 S2 ... Sn (41) g : D S be a map from D to S . Let For each x D, g ( x) ( g1 ( x),..., g j ( x),..., gn ( x)) . (42) Definition 9 . (Generalized Pareto Solution) A x* D is a generalized Pareto solution if there not exists x ' D such that g ( x*) g ( x ') and for any g ( x*) g ( x '). i.e., (43) x ' D , if g j ( x*) g j ( x ') for some j, then there is k j such that gk ( x ') gk ( x*) . (44) We will see that this new definition is a useful concept in the group decision making problems with intuitionistic linguistic preference relations. 6.3. Fuzzy Pareto Solution Definition 10. (Fuzzy Pareto Solution) X x1 , x2 ,..., xn be an alternatives set. The evaluation information of the expert Let ek about X is a IFS on X ( p k M ( x1 ), pVk ( x1 )) / x1 ,...,( pMk ( xn ), pVk ( xn ) / xn , k=1, 2, ..., m 10 Bui Cong Cuong, Vladik Kreinovich, Le Hoang Son, Nilanjan Dey Let S1 , S2 be totally ordered linguistic-label sets. Suppose that there is an aggregated evaluation map g : X S1 S2 g ( x) ( g M ( x1 ), gV ( x1 )) / x1, ... , ( g M ( xn ), gV ( xn ) / xn . (45) For each xi X , i = 1,…,n g ( xi ) ( gM ( xi ), gV ( xi )) is a linguistic IFS on X, where g M ( xi ) S1 is the first membership degree and gV ( xi ) S2 is the second membership degree. A x* X is an Fuzzy Pareto Solution (FPS ), if there not exists x ' D such that: gM ( x*) gM ( x ') and gM ( x*) gM ( x ') and gV ( x ') gV ( x ) , or (46) gV ( x ') gV ( x ). (47) In the case that S1 S2 S is a linguistic labels set defined as in Section 1, FPS is a type-2 IFS. 6.4. Some aggregation procedures We consider the following multi-criteria problem: Given the alternatives set X x1 , x2 ,..., xn . Given the criteria set The expert set C1 , C2 ,..., CL . E e1 ,..., em with their importance w(k ) : ek E such that 0 w(k ) 1 , k w(k ) 1 .Given criteria’s 0 l 1 , and l l 1 . and important weights 1 , 2 ,..., L such that The linguistic labels set: S s1 I , s2 EU , s3 VLC, s4 SC, s5 IM , s6 MC, s7 ML, s8 EL, s9 C We assume that each expert ekE provides his/ her opinions on X by mean of intuitionistic linguistic preference relations pkl (M kl ,Vkl ), k 1,..., m, l 1,..., L (48) satisfying the soft-reciprocal condition. The linguistic preference relations are: M kl kl ( xi , x j ) , for i, j 1,.., n, kl ( xi , x j ) S (49) and the linguistic non-reference relations are Vkl kl ( xi , x j ) , for i, j 1,..., n, kl ( xi , x j ) S , (50) Fuzzy Pareto Solution in multi-criteria group decision making 11 We have to evaluate and to choose the solution sets based on the given intuitionistic linguistic preference relations. Using the algorithms in Section 4, we present three aggregation procedures for FPS. Aggregation procedure 1: Step 1. 1.1.a. For each criterion Cl, using pkl (M kl ,Vkl ), k 1,..., m and the weights w(k ) : ek E , calculate the linguistic dominance degrees: E1M ( xi , x j ) Low( S ,U M 1 ) , where U ML is calculated as (18) with i, j= 1,…,n pkl M kl 1.1.b. For each criterion Cl , using the relation (51) . EMl , calculate the FCS according to each criterion Cl FCSMl fcsMl ( x1 ) / x1 ,..., fcsMl ( xn ) / xn , l=1,…, L (52) as in Definition 2 . 1.2.a. For each criterion Cl , calculate the linguistic non-dominance degrees: EVl ( xi , x j ) Low( S , UVl ) , where UVl is calculated as (18) with i, j= 1,…,n (53) pkl Vkl . 1.2.b. For each criterion Cl , using the relation EVl , calculate the FCS according to each criterion Cl FCSVl fcsVl ( x1 ) / x1 ,..., fcsVl ( xn ) / xn , l=1,…, L (54) as in Definition 2 . Now we obtain Intuitionistic Fuzzy Evaluation IFE l ( fcsMl ( x1 ), fcsVl ( x1 )) / x1 ,.., ( fcsMl ( xn ), fcsVl ( xn )) / xn . (55) Step 2 Using the {( FCSMl , FCSVl ), l 1,..., L} and the important weights 1 , 2 ,..., L , calculate the aggregated fuzzy collective solutions (aFCS): aFCSM afcsM ( x1 ) / x1 , ..., afcsM ( xn ) / xn and aFCSV afcsV ( x1 ) / x1 , ..., afcsV ( xn ) / xn (56) (57) as in Definition 3. Finally, we obtain Aggregated Intuitionistic Fuzzy Evaluation (aIFE): aIFE (afcsM ( x1 ) / x1 , afcsV ( x1 )) ..., (afcsM ( xn ) / xn , afcsV ( xn )) . (58) 12 Bui Cong Cuong, Vladik Kreinovich, Le Hoang Son, Nilanjan Dey Using aIFE, we choose Aggregated Fuzzy Pareto Solution (aFPS) of the problem. Aggregation procedure 2: Step 1. pkl (M kl ,Vkl ), k 1,..., m and the weights For each criterion Cl, using w(k ) : ek E , calculate the linguistic dominance degrees: E1M ( xi , x j ) Low( S ,U M 1 ) , i, j= 1,…,n p M kl U kl Ml is calculated as (18) with where Calculate the linguistic non-dominance degrees: EV1 ( xi , x j ) Low( S ,UV 1 ) , (59) . i, j= 1,…,n (60) pkl Vkl . where UVl is calculated as (18) with Step 2. 2.a. Using E 1 M the relations of linguistic dominance degrees important weights ,..., EML and the 1 ,..., L , calculate the totally social opinion relation QM qM ( xi , x j ) , i, j 1,..., n (61) U qM uqT ,..., uq1 Where qM ( xi , x j ) Low(S ,U qM ) , where l uqt Wijq (st ) l l : EM (i, j ) st , (62) t=1,...,T . Using the relations of linguistic non-dominance degrees (63) E ,..., E 1 V L V and the important weights 1 ,..., L , calculate the totally social opinion relation QV qV ( xi , x j ) , i, j 1,..., n where qV ( xi , x j ) Low(S ,U qV ) uqt Wijq (st ) where (64) U qM uqT ,..., uq1 , l : EVl (i, l j ) st , t=1,...,T . (65) (66) 2.b. Using QM , QV , calculate the fuzzy collective solution according to the totally social opinion relations fcs (x ) / x FCSQM fcsqM ( x1 ) / x1 ,..., fcsqM ( xn ) / xn and (67) FCSQV (68) qV ( x1 ) / x1 ,..., fcsqV n n Fuzzy Pareto Solution in multi-criteria group decision making as in Definition 2 From (67,68) we obtain Intuitionistic Fuzzy Evaluation IFEQ ( fcsqM ( x1 ), fcsqV ( x1 )) / x1 ,..,( fcsqM ( xn ), fcsqV ( xn )) / xn 13 (69) Using IFEQ , we choose FPS of the problem. Aggregation procedure 3: Step 1. For each expert ek, for k=1,...,m, use pkl (M kl ,Vkl ), l 1,..., L , and the weights 1 ,..., L , calculate FMk ( xi , x j ) Low( S ,U Mk ) : M (i, j) s t=1,...,T, fe ( x ) / x ,..., fe ( x ) / x , k =1....,m where U Mk [uT ,..., u1 ] , where, ut FEMk and the fuzzy evaluation (70) l l k M kl 1 t k M 1 n n fe ( xi ) Low(S ,V ) , k M where where VMk [vT ,..., v1 ] , (71) k M (72) for t=1,...,T , vt j:F k M ( xi , x j ) st , j i n 1 (73) as (31) with F k FMk . Analogously, calculate FVk ( xi , x j ) Low(S ,UVk ), where U [uT ,..., u1 ] , where ut k V and the fuzzy evaluation l (74) : Vkl (i, j ) st , t=1,...,T, (75) FEVk feVk ( x1 ) / x1 ,..., feVk ( xn ) / xn , k=1,..,m (76) feVk ( xi ) Low( S ,V k ) , VVk [vT ,..., v1 ] , where vt j : FVk ( xi , x j ) st , j i as (31) with n 1 , t=1,…,T F k FVk . Step 2. Using the fuzzy evaluation ( FEMk , FEVk ), k 1,..., m and the weights {w(k): ekE}, calculate the aggregated fuzzy evaluation (aFE): aFEM afeM ( x1 ) / x1 , ..., afceM ( xn ) / xn and aFEV afeV ( x1 ) / x1 , ..., afeV ( xn ) / xn as in Definition 3. Then we obtain Aggregated Intuitionistic Fuzzy Evaluation (aIFE): aIFE (afeM ( x1 ), afeV ( x1 )) / x1 ,,...,(afeM ( xn ), afeV ( xn )) / xn . Using aIFE, we choose aFPS of the problem. (78) (77) 14 Bui Cong Cuong, Vladik Kreinovich, Le Hoang Son, Nilanjan Dey 7. A numerical example We consider the following multi criteria GDM problem with intuitionistic linguistic preference relations: The alternatives set: X x1 , x2 , x3 , x4 . The expert set: E e1 , e2 , e3 with their importance w={0.2, 0.5, 0.3}. The set of criteria: C C1 , C2 , C3 with their importance weighs 0.35,0.4,0.25 . The linguistic labels set: S s1 I , s2 EU , s3 VLC, s4 SC, s5 IM , s6 MC, s7 ML, s8 EL, s9 C . The intuitionistic linguistic preference relations are relations pkl (M kl ,Vkl ), k 1, 2,3, l 1, 2,3 (79) M kl kl ( xi , x j ) , i, j 1, 2,3, 4 where Vkl kl ( xi , x j ) , (80) i, j 1, 2,3, 4 (81) are given in the Appendix. 7.1. Computing with the aggregation procedure 1 Step1. Step 1.1. Computing for criterion C1 1.1.a. Use the linguistic preference relations M 21 IM ML MC SC IM MC SC SC IM ML IM EL EU IM MC SC IM EU M 31 SC MC EU IM ML IM , MC SC IM EL EU IM MC MC SC IM SC EU M 31 EU SC MC IM IM ML IM EL , EU EU EU IM . Calculate the linguistic dominance degrees: E1M ( xi , x j ) Low(S ,U M 1 ) , i,j = 1,2,3, 4 as in (51). E1M ( x1, x1 ) Low((s5 ),(1)) s5 IM . E1M ( x1, x2 ) Low(( s6 , s7 , s6 ), (0.2, 0.5, 0.3)) C (0.5, s7 ), (0.5, Low(( s6 ), (1)) C (0.5, s7 ), (0.5, s6 ) sk (1,2) , k (1, 2) 6 round ((0.5).(7 6)) 6 1 7 sk (1,2) s7 ML . E1M ( x1, x3 ) Low(( s7 , s6 , s6 ), (0.2, 0.5, 0.3)) C (0.2, s7 ), (0.8, Low(( s6 ), (1)) C (0.2, s7 ), (0.8, s6 ) sk (1,3) , k (1,3) 6 round ((0.2).(8 6)) 6 0 6 sk (1,3) s6 MC . Fuzzy Pareto Solution in multi-criteria group decision making 15 E1M ( x1, x4 ) Low(( s2 , s2 , s2 ), (0.2, 0.5, 0.3)) C (0.2, s2 ), (0.8, Low(( s2 ), (1)) C (0.2, s2 ), (0.8, s2 ) s2 EU . E1M ( x2 , x1 ) Low((s4 , s4 , s4 ),(0.2,0.5,0.3)) C (0.2, s4 ),(0.8, s4 ) s4 SC. E1M ( x2 , x2 ) Low((s5 , s5 , s5 ),(0.2,0.5,0.3)) C (0.2, s5 ),(0.8, s5 ) s5 IM . E1M ( x2 , x3 ) Low(( s4 , s6 , s4 ), (0.2, 0.5, 0.3)) C (0.5, s6 ), (0.5, Low(( s4 , s4 ),1)) C (0.5, s6 ), (0.5, s4 ) sk (2,3) , k (2,3) 4 round ((0.5).(6 4)) 4 1 5 E1M sk (2,3) s5 IM . ( x2 , x4 ) Low(( s3 , s2 , s2 ), (0.2, 0.5, 0.3)) C (0.2, s3 ), (0.8, Low(( s2 , s2 ), (1) C (0.2, s3 ), (0.8, s2 ) sk (2,4) , k (2, 4) 2 round ((0.2).(3 1)) 2 0 2 sk (2,4) s2 EU . E1M ( x3 , x1 ) Low(( s3 , s4 , s4 ), (0.2, 0.5, 0.3)) C (0.5, s4 ), (0.5, Low(( s4 , s3 ), (3/ 5, 2 / 5)) C (0.5, s4 ), (0.5, s4 ) s4 SC. E1M ( x3 , x2 ) Low(( s6 , s4 , s6 ), (0.2, 0.5, 0.3)) C (0.2, s6 ), (0.8, Low(( s6 , s4 ), (3/ 8,5 / 8)) C (0.2, s6 ), (0.8, s5 ) sk (3,2) s5 IM . since Low((s6 , s4 ),(3/ 8,5/ 8)) sk , k 4 round ((3/ 8).(6 4)) 4 1 5 E1M ( x3 , x3 ) sk s5 Low((s5 , s5 , s5 ),(0.2,0.5,0.3)) C (0.2, s5 ),(0.8, s5 ) s5 IM . E1M ( x3 , x4 ) Low(( s2 , s2 , s2 ), (0.2, 0.5, 0.3)) C (0.2, s2 ), (0.8, Low(( s2 ), (1)) C (0.2, s2 ), (0.8, s2 ) s2 EU . E1M ( x4 , x1 ) Low(( s8 , s7 , s7 ), (0.2, 0.5, 0.3)) C (0.2, s8 ), (0.8, Low(( s7 ), (1)) C (0.2, s8 ), (0.8, s7 ) sk (4,1) , k (4,1) 7 round ((0.2).(8 7)) 7 sk (4,1) s7 ML . E1M ( x4 , x2 ) Low(( s5 , s5 , s5 ), (0.2, 0.5, 0.3)) C (0.2, s5 ), (0.8, Low(( s5 ), (1)) C (0.2, s5 ), (0.8, s5 ) s5 IM . E1M ( x4 , x3 ) Low(( s7 , s8 , s9 ), (0.2, 0.5, 0.3)) C (0.3, s9 ), (0.7, Low(( s8 , s7 ), (5 / 8, 2 / 8)) C (0.3, s9 ), (0.7, s8 ) sk (4,1) , since Low((s8 , s7 ),(5/ 7, 2 / 7)) sk , k 7 round ((5/ 7).(8 7)) 7 1 8 k (4,3) 8 round ((0.3).(9 8)) 8 sk (4,3) s8 EL . sk s8 16 Bui Cong Cuong, Vladik Kreinovich, Le Hoang Son, Nilanjan Dey E1M ( x4 , x4 ) Low((s5 , s5 , s5 ),(0.2,0.5,0.3)) C (0.2, s5 ),(0.8, s5 ) s5 IM We obtain the linguistic dominance degrees for criterion C1 : IM ML MC SC IM IM EM1 SC IM IM ML IM EL EU EU . EU IM (82) Calculate the FCS by Definition 2. fcs1M ( x1 ) Low(( s7 , s6 , s2 ), (1/ 3,1/ 3,1/ 3)) C (1/ 3, s7 ), (2 / 3, Low(( s6 , s2 ), (0.5, 0.5)) C (1/ 3, s7 ), (2 / 3, s4 ) sk , since Low((s6 , s2 ),(0.5,0.5)) sk ' , k ' 2 round ((0.5).(6 2)) 2 2 4 sk ' s4 , k 4 round ((1/ 3).(7 4)) 4 1 5 sk s5 IM . fcs1M ( x2 ) Low(( s5 , s4 , s2 ), (1/ 3,1/ 3,1/ 3)) C (1/ 3, s5 ), (2 / 3), Low(( s4 , s2 ), (1/ 2,1/ 2)) C (1/ 3, s5 ), (2 / 3, s3 ) sk , since Low((s4 , s2 ),(0.5,0.5)) sk ' , k ' 2 round ((0.5).(4 2)) 2 1 3 k 3 round ((1/ 3).(5 3)) 3 1 4 sk ' s3 sk s4 SC . fcs1M ( x3 ) Low(( s5 , s4 , s2 ), (1/ 3,1/ 3,1/ 3)) C (1/ 3, s5 ), (2 / 3, Low(( s4 , s2 ), (1/ 2,1/ 2)) C (1/ 3, s5 ), (2 / 3, s3 ) s4 SC. fcs1M ( x4 ) Low(( s7 , s5 , s8 ), (1/ 3,1/ 3,1/ 3)) C (1/ 3), s8 , 2 / 3.Low(( s7 , s5 ), (0.5, 0.5) C (1/ 3, s8 ), (2 / 3, s6 ) sk , since Low((s7 , s5 ),(0.5,0.5)) sk ' , k ' 5 round ((0.5).(7 5)) 5 1 6 k 6 round ((1/ 3).(8 6)) 6 1 7 sk ' s6 sk s7 ML . We obtain FCS for criterion C1. FCSM1 IM / x1 , SC / x2 , SC / x3 , ML / x4 . (83) 1.1.b. Use the linguistic non-preference relations SC EU V11 IM EU SC VLC VLC SC EU SC VLC EU V21 VLC SC SC SC SC VLC SC EU , VLC SC SC EU SC VLC EU V31 EU MC SC VLC EU VLC SC EU , EU SC SC SC SC SC SC SC I SC EU I SC Fuzzy Pareto Solution in multi-criteria group decision making 17 Calculate the linguistic dominance degrees using non-preference relations: EV1 ( xi , x j ) Low(S ,UV 1 ) , i, j = 1,2,3,4 as in (53). EV1 ( x1, x1 ) Low(( s4 , s4 , s4 ), (0.2, 0.5, 0.3)) C (0.2, s4 ), (0.8, Low(( s4 ), (1) C (0.2, s4 ), (0.8, s4 ) s4 SC. EV1 ( x1, x2 ) Low(( s4 , s2 , s4 ), (0.2, 0.3, 0.5)) C (0.2, s4 ), (0.8Low((s4 , s2 ), (3 / 8,5 / 8)) C (0.2, s4 ), (0.8, s3 ) sk (1,2) , since Low((s4 , s2 ),(3/ 8,5 / 8)) sk ' , k ' 2 round ((3/ 8).(4 2)) 2 1 3 k (1, 2) 3 round ((0.2).(4 3)) 3 0 3 sk ' s3 sk (1,2) s3 VLC EV1 ( x1, x3 ) Low(( s3 , s3 , s4 ), (0.3, 0.5, 0.2)) C (0.3, s3 ), (0.7 Low(( s4 , s3 ), (2 / 7,5 / 7)) C (0.3, s3 ), (0.7, s3 ) s3 VLC , since Low((s4 , s3 ),(2 / 7,5 / 7)) sk ' , k ' 3 round ((2 / 7)(4 3)) 3 0 3 sk ' s3 EV1 ( x1, x4 ) Low(( s3 , s4 , s4 ), (0.2, 0.5, 0.3)) C (0.5, s4 ), (0.5 Low(( s4 , s3 ), (3/ 5, 2 / 5)) C (0.5, s4 ), (0.5, s4 ) s4 SC , since Low((s4 , s3 ),(3/ 5, 2 / 5)) sk ' , k ' 3 round ((3/ 5).(4 3)) 3 1 4 . sk ' s4 EV1 ( x2 , x1 ) Low((s2 , s2 , s2 ),(0.3,0.5,0.2)) s2 EU EV1 ( x2 , x2 ) Low(( s4 , s4 , s4 ), (0.2, 0.5, 0.3)) C (0.2, s4 ), (0.8, Low(( s4 ), (1)) C (0.2, s4 ), (0.8, s4 ) s4 SC. EV1 ( x2 , x3 ) Low(( s3 , s3 , s4 ), (0.2, 0.5, 0.3)) C (0.3, s4 ), (0.7 Low(( s3 ), (1)) C (0.3, s4 ), (0.7, s3 ) sk (2,3) , k (2,3) 3 round ((0.3).(4 3)) 3 0 3 EV1 ( x2 , x4 ) sk (2,3) s3 VLC . Low((s2 , s2 , s2 ),(0.3,0.5,0.2)) s2 EU EV1 ( x3 , x1 ) Low(( s5 , s3 , s2 ), (0.2, 0.5, 0.3)) C (0.2, s5 ), (0.8 Low(( s3 , s2 ), (5 / 8,3/ 8)) C (0.2, s4 ), (0.8, s3 ) sk (3,1) , since 18 Bui Cong Cuong, Vladik Kreinovich, Le Hoang Son, Nilanjan Dey Low((s3 , s2 ),(5 / 8,3/ 8)) sk ' , k ' 2 round ((5 / 8).(3 2)) 2 1 3 sk ' s3 .. k (3,1) 3 round ((0.2).(5 3)) 3 0 3 sk (3,1) s3 VLC . Low(( s4 , s6 , s4 ), (0.2, 0.5, 0.3)) C (0.5, s6 ), (0.5 Low(( s4 ), (1)) EV1 ( x3 , x2 ) C (0.5, s6 ), (0.5, s4 ) sk (3,2) , k (3, 2) 4 round ((0.5).(6 4)) 4 1 5 EV1 ( x3 , x3 ) sk (3,2) s5 IM . Low(( s4 , s4 , s4 ), (0.2, 0.5, 0.3)) C (0.2, s4 ), (0.8, Low(( s4 ), (1)) C (0.2, s4 ), (0.8, s4 ) s4 SC. EV1 ( x3 , x4 ) Low(( s4 , s3 , s1 ), (0.2, 0.5, 0.3)) C (0.2, s4 ), (0.8 Low(( s3 , s1), (5 / 8,3/ 8)) C (0.2, s4 ), (0.8, s2 ) sk (3,4) , since Low((s3 , s1 ),(5 / 8,3/ 8)) sk ' , k ' 1 round ((5 / 8).(3 1)) 1 1 2 k (3, 4) 2 round ((0.2).(4 2)) 2 0 2 EV1 ( x4 , x1 ) sk (3,4) s2 EU sk ' s2 . Low((s2 , s2 , s2 ),(0.3,0.5,0.2)) s2 EU . EV1 ( x4 , x2 ) Low(( s4 , s2 , s4 ), (0.2, 0.5, 0.3)) C (0.2, s4 ), (0.8 Low(( s4 , s2 ), (3/ 8,5 / 8)) C (0.2, s4 ), (0.8, s3 ) sk (4,2) , since Low((s4 , s2 ),(3/ 8,5 / 8)) sk , , k ' 2 round ((3/ 8).(4 2)) 2 1 3 k (4, 2) 3 round ((0.2).(4 3)) 3 0 3 sk ' s3 sk (4,2) s3 VLC . EV1 ( x4 , x3 ) Low((s3 , s3 , s1 ),(0.2,0.5,0.3)) C (0.7, s3 ),(0.3, s1) sk (4,3) , k (4,3) 1 round ((0.7).(3 1)) 1 1 2 EV1 ( x4 , x4 ) sk (4,3) s2 EU . Low(( s4 , s4 , s4 ), (0.2, 0.5, 0.3)) C (0.2, s4 ), (0.8, Low(( s4 ), (1)) C (0.2, s4 ), (0.8, s4 ) s4 SC. We obtain the linguistic dominance degrees using non-preference relations for criterion C1. Fuzzy Pareto Solution in multi-criteria group decision making SC EU EV1 VLC EU VLC VLC SC IM VLC SC VLC EU SC EU EU SC 19 (84) Calculate the FCS as in (54). fcsV1 ( x1 ) Low((s4 , s3 ),(1/ 3, 2 / 3)) C (1/ 3, s4 ),(2 / 3, s3 ) sk k 3 round ((1/ 3).(4 3)) 3 0 3 , sk s3 VLC . fcsV1 ( x2 ) Low((s3 , s2 ),(1/ 3, 2 / 3)) C (1/ 3, s3 ),(2 / 3), s2 ) sk k 2 round ((1/ 3).(3 2)) 2 0 2 , sk s2 EU . fcsV1 ( x3 ) Low(( s3 , s5 , s2 ), (1/ 3,1/ 3,1/ 3)) C (1/ 3, s5 ), (2 / 3, Low(( s3 , s2 ), (1/ 2,1/ 2)) C (1/ 3, s5 ), (2 / 3, s3 ) sk , since Low((s3 , s2 ),(0.5,0.5)) sk ' , k ' 2 round ((0.5).(3 2)) 2 1 3 sk , s3 k 3 round ((1/ 3).(5 3)) 3 1 4 sk s4 SC . fcsV1 ( x4 ) Low((s3 , s2 ),(1/ 3, 2 / 3)) C (1/ 3, s3 ),(2 / 3, s2 ) sk , k 2 round ((1/ 3).(3 2)) 2 0 2 sk s2 EU . We obtain FCS using non-preference relations for the criterion C1. FCSV1 VLC / x1 , EU / x2 , SC / x3 , EU / x4 . (85) Finally, we obtain IFE for the criterion C1. IFE1 ( IM ,VLC) / x1 , ( SC, EU ) / x2 , ( SC, SC) / x3 , ( ML, EU ) / x4 , (86) and Fuzzy Pareto Solution (FPS) for criterion C1 is x4 . Step 1.2. Computing for criterion C2. 1.2.a. Use the linguistic preference relations IM VLC M 12 VLC SC MC ML IM SC SC IM IM MC IM IM SC SC , M 22 VLC EU IM SC ML MC IM SC IM IM MC MC MC IM IM SC IM SC , M 32 VLC SC SC IM SC SC MC MC MC IM IM VLC IM IM 20 Bui Cong Cuong, Vladik Kreinovich, Le Hoang Son, Nilanjan Dey Calculate the linguistic dominance degrees: 2 EM ( xi , x j ) Low(S ,U M 2 ) , U M 2 u2T ,..., u21 , with i ,j =1,2,3,4 (87) u2t Wij (st ) w(k ) : M k 2 (i, j ) st , k t=1,...,T. 2 EM ( x1, x1 ) (88) Low((s5 , s5 , s5 ),(0.2,0.5,0.3)) C (0.2, s5 ),(0.8, Low(( s5 ,1) s5 IM . 2 EM ( x1, x2 ) Low(( s7 , s6 , s5 ), (0.5, 0.2, 0.3)) C (0.5, s7 ), (0.5, Low((s6 , s5 ),(2 / 5,3 / 5)) C (0.5, s7 ), (0.5, s5 ) sk (1,2) , since Low((s6 , s5 ),(2 / 5,3/ 5)) sk ' , k ' 5 round ((2 / 5).(6 5)) 5 0 5 sk , s5 . k (1, 2) 5 round ((0.5).(7 5)) 5 1 6 2 EM sk (1,2) s6 MC . ( x1, x3 ) Low(( s7 , s6 , s6 ), (0.2, 0.5, 0.3)) C (0.2, s7 ), (0.8, Low(( s6 ), (1)) C (0.2, s7 ), (0.8, s6 ) sk (1,3) , k (1,3) 6 round ((0.2).(7 6)) 6 0 6 2 EM ( x1, x4 ) sk (1,3) s6 MC Low((s5 , s6 , s6 ),(0.2,0.5,0.2)) C (0.8, s6 ),(0.2, s5 ) sk (1,4) k (1, 4) 5 round ((0.8).(6 5)) 5 1 6 sk (1,4) s6 MC 2 EM ( x2 , x1 ) . . Low((s3 , s4 , s4 ),(0.2,0.5,0.3)) C (0.8, s4 ),(0.2, s3 ) sk (2,1) , k (2,1) 3 round ((0.8).(4 3)) 3 1 4 sk (2,1) s4 SC 2 EM ( x2 , x2 ) Low(( s5 , s5 , s5 ),(0.2,0.5,0.3)) C (0.2, s5 ),(0.8, Low(( s5 ,1) s5 IM . 2 EM ( x2 , x3 ) Low(( s4 , s5 , s6 ), (0.2, 0.5, 0.3)) C (0.3, s6 ), (0.7, Low(( s5 , s4 ), (5 / 7, 2 / 7)) C (0.3, s6 ), (0.7, s5 ) sk (2,3) , since Low((s5 , s4 ),(5 / 7, 2 / 7)) sk ' , k ' 4 round ((5 / 7).(5 4)) 4 1 5 k (2,3) 5 round ((0.3).(6 5)) 5 0 5 sk (2,3) s5 IM . Fuzzy Pareto Solution in multi-criteria group decision making 21 2 EM ( x2 , x4 ) Low(( s4 , s4 , s5 ), (0.2, 0.5, 0.3)) C (0.3, s5 ), (0.7, Low(( s4 ), (1)) C (0.3, s5 ), (0.7, s4 ) sk (2,4) . k (2, 4) 4 round ((0.3).(5 4)) 4 0 4 2 EM ( x3 , x1 ) sk (2,3) s4 SC . Low((s3 , s3 , s3 ),(0.2,0.5,0.3)) C ( s3 ),(1) s3 VLC. 2 EM ( x3 , x2 ) Low((s4 , s4 , s4 ),(0.2,0.5,0.3)) C (s4 ),(1) s4 SC. 2 EM ( x3 , x3 ) Low(( s5 , s5 , s5 ),(0.2,0.5,0.3)) C (0.2, s5 ),(0.8, Low((s5 ,1) s5 IM . 2 EM ( x3 , x4 ) Low(( s2 , s4 , s3 ), (0.2, 0.5, 0.3)) C (0.5, s4 ), (0.5) Low(( s3 , s2 )(3/ 5, 2 / 5)) C (0.5, s4 ), (0.5, s3 ) sk (3,4) . since Low((s3 , s2 ),(3/ 5, 2 / 5)) sk ' , k ' 2 round ((3/ 5).(3 2)) 2 1 3 k (3, 4) 3 round ((0.5).(4 3)) 3 1 4 sk (3,4) s4 SC . 2 EM ( x4 , x1 ) Low((s4 , s4 , s4 ),(0.2,0.5,0.3)) C ( s4 ),(1) s4 SC. 2 EM ( x4 , x2 ) Low(( s5 , s6 , s4 ), (0.2, 0.5, 0.3)) C (0.5, s6 ), (0.5)Low((s5 , s4 )(2 / 5,3 / 5)) C (0.5, s6 ), (0.5, s4 ) sk (4,2) . since Low((s5 , s4 ),(2 / 5,3/ 5)) sk ' , k ' 4 round ((2 / 5).(5 4)) 4 0 4 k (4, 2) 4 round ((0.5).(6 4)) 1 1 5 sk (4,2) s5 IM . 2 EM ( x4 , x3 ) Low((s6 , s6 , s5 ),(0.2,0.5,0.3)) C (0.7, s6 ),(0.3, s5 ) s6 MC. 2 EM ( x4 , x4 ) Low(( s5 , s5 , s5 ),(0.2,0.5,0.3)) C (0.2, s5 ),(0.8, Low(( s5 ,1) s5 IM . We obtain the linguistic dominance degrees for criterion C2 : EM2 IM SC VLC SC MC MC IM SC IM IM SC MC MC SC . SC IM (89) 22 Bui Cong Cuong, Vladik Kreinovich, Le Hoang Son, Nilanjan Dey Calculate the FCS 2 fcsM ( x1 ) Low(( s6 ),(1)) s6 MC . 2 fcsM ( x2 ) Low((s5 , s4 ),(1/ 3, 2 / 3)) C((1/ 3, s5 ),(2 / 3, s4 )} sk , k 4 round ((1/ 3).(5 4)) 4 0 4 sk s4 SC 2 fcsM ( x3 ) Low((s4 , s3 ),(2 / 3,1/ 3)) C{(2 / 3, s4 ),(1/ 3, s3 )} sk , k 3 round ((2 / 3).(4 3)) 3 1 4 sk s4 SC 2 fcsM ( x4 ) Low((s6 , s4 ),(1/ 3, 2 / 3)) C{(1/ 3, s6 ),(2 / 3, s4 )} sk , k 4 round ((1/ 3).(6 4)) 4 1 5 sk s5 IM and the FCS FCSM2 MC / x1 , SC / x2 , SC / x3 , IM / x4 . (90) 1.2.b. Use the linguistic non-preference relations SC SC VLC SC EU IM SC SC IM VLC V22 V12 IM MC SC SC MC SC MC MC VLC SC , VLC VLC SC IM VLC SC V32 SC SC VLC VLC VLC SC MC , EU SC VLC SC SC SC VLC SC SC SC SC EU SC SC SC Calculate the linguistic non-dominance degrees: EV2 ( xi , x j ) Low( S ,UV 2 ) , for i,j =1,…,4 UV 2 u2T ,..., u21 ,with (91) u2t Wij (st ) w(k ) : Vk 2 (i, j ) st ,for each k t=1,...,T. EV2 ( x1, x1 ) (92) Low(( s4 , s4 , s4 ), (0.2, 0.5, 0.3)) C (0.2, s4 ), (0.8, Low(( s4 ), (1)) C (0.2, s4 ), (0.8, s4 ) s4 SC. EV2 ( x1, x2 ) Low(( s3 , s2 , s4 ), (0.2, 0.5, 0.3)) C (0.3, s4 ), (0.7, Low((s3 , s2 ),(2 / 7,5 / 7) C (0.3, s4 ), (0.7, s2 ) sk (2,1) , since Low((s3 , s2 ),(2 / 7,5 / 7)) sk ' , k ' 2 round ((2 / 7).(3 2)) 2 0 2, k (1, 2) 2 round ((0.3).(4 2)) 2 1 3 sk (2,1) s3 VLC. Fuzzy Pareto Solution in multi-criteria group decision making 23 EV2 ( x1, x3 ) Low(( s4 , s3 , s3 ), (0.2, 0.5, 0.3)) C (0.3, s4 ), (0.7) Low(( s3 )(1)) C (0.3, s4 ), (0.7, s3 ) sk (1,3) . k (1,3) 3 round ((0.3).(4 3)) 3 0 3 sk (1,3) s3 VLC. EV2 ( x1, x4 ) Low(( s2 , s3 , s2 ), (0.2, 0.5, 0.3)) C (0.5, s3 ), (0.5) Low(( s2 )(1)) C (0.5, s3 ), (0.5, s2 ) sk (1,4) . k (1, 4) 2 round ((0.5).(3 2)) 2 1 3 sk (1,4) s3 VLC. EV2 ( x2 , x1 ) Low(( s4 , s5 , s5 ), (0.2, 0.5, 0.3)) C (0.5, s5 ), (0.5) Low(( s5 , s4 )(3/ 5, 2 / 5)) C (0.5, s5 ), (0.5, s5 ) s5 IM , since Low((s5 , s4 ),(3/ 5, 2 / 5)) sk ' , k ' 4 round ((3/ 5).(5 4)) 4 1 5. EV2 ( x2 , x2 ) Low(( s4 , s4 , s4 ), (0.2, 0.5, 0.3)) C (0.2, s4 ), (0.8, Low(( s4 ), (1)) C (0.2, s4 ), (0.8, s4 ) s4 SC. EV2 ( x2 , x3 ) Low(( s5 , s3 , s3 ), (0.2, 0.5, 0.3)) C (0.2, s5 ), (0.8) Low(( s3 )(1)) C (0.2, s5 ), (0.8, s3 ) sk (2,3) , k (2,3) 3 round ((0.2).(5 3)) 3 0 3 sk (2,3) s3 VLC. EV2 ( x2 , x4 ) Low(( s3 , s4 , s4 ), (0.2, 0.5, 0.3)) C (0.5, s4 ), (0.5) Low(( s4 , s3 ), (3/ 5, 2 / 5)) C (0.5, s4 ), (0.5, s4 ) s4 SC , since Low((s4 , s3 ),(3/ 5, 2 / 5)) sk ' , k ' 3 round ((3/ 5).(4 3)) 3 1 4. EV2 ( x3 , x1 ) . Low(( s6 , s5 , s4 ), (0.2, 0.5, 0.3)) C (0.2, s6 ), (0.8) Low(( s5 , s4 )(5 / 8,3/ 8)) C (0.2, s6 ), (0.8, s5 ) sk (3,1) . 24 Bui Cong Cuong, Vladik Kreinovich, Le Hoang Son, Nilanjan Dey Since Low((s5 , s4 ),(5 / 8,3/ 8)) sk ' , k ' 4 round ((5 / 8).(5 4)) 4 1 5, k (3,1) 5 round ((0.2).(6 5)) 5 0 5 sk (3,1) s5 IM . EV2 ( x3 , x2 ) Low(( s4 , s4 , s4 ), (0.2, 0.5, 0.3)) C (0.2, s4 ), (0.8, Low(( s4 ), (1)) C (0.2, s4 ), (0.8, s4 ) s4 SC. EV2 ( x3 , x3 ) Low(( s4 , s4 , s4 ), (0.2, 0.5, 0.3)) C (0.2, s4 ), (0.8, Low(( s4 ), (1)) C (0.2, s4 ), (0.8, s4 ) s4 SC. EV2 ( x3 , x4 ) Low(( s6 , s3 , s4 ), (0.2, 0.5, 0.3)) C (0.2, s6 ), (0.8) Low(( s4 , s3 )(3/ 8,5 / 8)) C (0.2, s6 ), (0.8, s3 ) sk (3,4) . since Low((s4 , s3 ),(3/ 8,5 / 8)) sk ' , k ' 3 round ((3/ 8).(4 3)) 3 0 3, EV2 ( x4 , x1 ) Low(( s4 , s4 , s6 ), (0.2, 0.5, 0.3)) C (0.3, s6 ), (0.7) Low(( s4 )(1)) C (0.3, s6 ), (0.7, s4 ) sk (4,1) . k (4,1) 4 round ((0.3).(6 4)) 4 1 5 sk (4,1) s5 IM . EV2 ( x4 , x2 ) Low(( s4 , s3 , s4 ), (0.2, 0.5, 0.3)) C (0.2, s4 ), (0.8) Low(( s4 , s3 )(3/ 8,5 / 8)) C (0.2, s4 ), (0.8, s3 ) sk (4,2) . since Low((s4 , s3 ),(3/ 8,5 / 8)) sk ' , k ' 3 round ((3/ 8).(5 4)) 3 0 3, k (4, 2) 3 round ((0.2).(4 3)) 3 0 3 sk (4,2) s3 VLC. EV2 ( x4 , x3 ) Low(( s3 , s3 , s4 ), (0.2, 0.5, 0.3)) C (0.3, s4 ), (0.7) Low(( s3 )(1)) C (0.3, s4 ), (0.7, s3 ) sk (4,3) . k (4,3) 3 round ((0.3).(4 3)) 3 0 3 sk (4,3) s3 VLC. Fuzzy Pareto Solution in multi-criteria group decision making 25 EV2 ( x4 , x4 ) Low(( s4 , s4 , s4 ), (0.2, 0.5, 0.3)) C (0.2, s4 ), (0.8, Low(( s4 ), (1)) C (0.2, s4 ), (0.8, s4 ) s4 SC. We obtain the linguistic non-dominance degrees using V12 ,V 22 ,V32 for criterion C2 : SC IM EV2 IM IM VLC VLC SC SC VLC SC VLC VLC VLC SC . SC SC (93) Calculate FCS fcsV2 ( x1 ) Low(( s3 ),(1)) s3 VLC fcsV2 ( x2 ) Low(( s5 , s4 , s3 ), (1/ 3, 2 / 3)) C (1/ 3, s5 ), (2 / 3, Low(( s4 , s3 ), (0.5, 0.5)) C (1/ 3, s5 ), (2 / 3, s4 ) sk , since Low((s4 , s3 ),(0.5,0.5)) sk ' , k ' 3 round ((0.5).(4 3)) 3 1 4 sk , s4 .. k 4 round ((1/ 3).(5 4)) 4 0 4 sk s4 SC. fcsV2 ( x3 ) Low(( s5 , s4 ),(1/ 3, 2 / 3)) C (1/ 3, s5 ),(2 / 3), s4 ) sk , k 4 round ((1/ 3).(5 4)) 4 0 4 sk s4 SC . fcsV2 ( x4 ) Low(( s5 , s4 , s3 ), (1/ 3, 2 / 3)) C (1/ 3, s5 ), (2 / 3, Low(( s4 , s3 ), (0.5, 0.5)) C (1/ 3, s5 ), (2 / 3, s4 ) sk , since Low((s4 , s3 ),(0.5,0.5)) sk ' , k ' 3 round ((0.5).(4 3)) 3 1 4 sk , s4 k 4 round ((1/ 3).(5 4)) 4 0 4 sk s4 SC. We obtain FCS using non-preference relations for criterion C2 FCSV2 VLC / x1 , SC / x2 , SC / x3 , SC / x4 . Finally, we obtain IFE for criterion C2 (94) 26 Bui Cong Cuong, Vladik Kreinovich, Le Hoang Son, Nilanjan Dey IFE 2 ( MC,VLC) / x1 , ( SC, SC) / x2 , ( SC, SC) / x3 , ( IM , SC) / x4 . (95) and FPS for criterion C2 is x1 . Step 1.3. Computing for criterion C3. 1.3.a. Use the linguistic preference relations IM SC M 13 VLC SC MC ML IM SC MC IM MC SC IM IM VLC SC M 23 SC IM IM VLC , ML IM IM MC IM SC SC SC ML IM ML SC MC SC IM MC IM IM M 33 IM SC IM SC SC IM VLC SC IM IM , Calculate the linguistic dominance degrees 3 EM ( xi , x j ) Low(S ,U M 3 ) , i, j =1,2,3,4 U M 3 u3T ,..., u31 , with (96) u3t Wij ( st ) w(k ) : M k 3 (i, j ) st , k t=1,...,T. 3 EM ( x1, x1 ) (97) Low((s5 , s5 , s5 ),(0.2,0.5,0.3)) C (0.2, s5 ),(0.8, Low(( s5 ,1) s5 IM . 3 EM ( x1, x2 ) Low(( s6 , s7 , s7 ), (0.2, 0.5, 0.3)) C (0.5, s7 ), (0.5, Low(( s7 , s6 ), (3/ 5, 2 / 5)) C (0.5, s7 ), (0.5, s7 ) s7 ML, since Low((s7 , s6 ),(3/ 5, 2 / 5)) sk ' , k ' 6 round ((3/ 5).(7 6)) 6 1 7 sk , s7 3 EM ( x1, x3 ) Low(( s7 , s5 , s4 ), (0.2, 0.5, 0.3)) C (0.2, s7 ), (0.8, Low(( s5 , s4 )(5 / 8,3/ 8)) C (0.2, s7 ), (0.8, s5 ) sk (1,3) , since Low((s5 , s4 ),(5 / 8,3/ 5)) sk ' , k ' 4 round ((5 / 8).(5 4)) 4 1 5 sk , s5 , k (1,3) 5 round ((0.2).(7 5)) 5 0 5 sk (1,3) s5 IM . Fuzzy Pareto Solution in multi-criteria group decision making 27 3 EM ( x1, x4 ) Low(( s5 , s7 , s7 ), (0.2, 0.5, 0.3)) C (0.5, s7 ), (0.5, Low(( s7 , s5 ), (3/ 5, 2 / 5)) C (0.5, s7 ), (0.5, s6 ) sk (1,4) , since Low((s7 , s5 ),(3/ 5, 2 / 5)) sk ' , k ' 5 round ((3/ 5).(7 5)) 5 1 6 sk , s6 , k (1, 4) 6 round ((0.5).(7 6)) 6 1 7 3 EM sk (1,4) s7 ML . ( x2 , x1 ) Low(( s4 , s3 , s4 ), (0.2, 0.5, 0.3)) C (0.2, s4 ), (0.8, Low(( s4 , s3 )(3/ 8,5 / 8)) C (0.2, s4 ), (0.8, s3 ) sk (2,1) , since Low((s4 , s3 ),(3/ 8,5 / 8)) sk ' , k ' 3 round ((3/ 8).(4 3)) 3 0 3 sk , s3 , k (2,1) 3 round ((0.2).(4 3)) 3 0 3 3 EM ( x2 , x2 ) sk (2,1) s3 VLC . Low(( s5 , s5 , s5 ),(0.2,0.5,0.3)) C (0.2, s5 ),(0.8, Low(( s5 ,1) s5 IM . 3 EM ( x2 , x3 ) Low(( s6 , s5 , s6 ), (0.2, 0.5, 0.3)) C (0.2, s6 ), (0.8, Low((s6 , s5 ),(3 / 8,5 / 8)) C (0.2, s6 ), (0.8, s5 ) sk (2,3) , since Low((s6 , s5 ),(3/ 8,5 / 8)) sk ' , k ' 5 round ((3/ 8).(6 5)) 5 0 5 sk , s5 k (2,3) 5 round ((0.2).(6 5)) 5 0 5 3 EM sk (2,3) s5 IM . . ( x2 , x4 ) Low(( s4 , s5 , s5 ), (0.2, 0.5, 0.3)) C (0.5, s5 ), (0.5, Low(( s5 , s4 )(3/ 5, 2 / 5)) C (0.5, s5 ), (0.5, s5 ) s5 IM , 28 Bui Cong Cuong, Vladik Kreinovich, Le Hoang Son, Nilanjan Dey since Low((s5 , s4 ),(3/ 5, 2 / 5)) sk ' , k ' 4 round ((3/ 5).(5 4)) 4 1 5 sk , s5. 3 EM ( x3 , x1 ) Low(( s3 , s4 , s5 ), (0.2, 0.5, 0.3)) C (0.3, s5 ), (0.7, Low(( s4 , s3 )(5 / 7, 2 / 7)) C (0.3, s5 ), (0.7, s4 ) sk (3,1) , since Low((s4 , s3 ),(5 / 7, 2 / 7)) sk ' , k ' 3 round ((5 / 7).(4 3)) 3 1 4 sk , s4 , k (3,1) 4 round ((0.3).(5 4)) 4 0 4 sk (3,1) s4 SC. 3 EM ( x3 , x2 ) Low(( s4 , s4 , s4 ),(0.2,0.5,0.3)) C (0.2, s4 ),(0.8, Low(( s4 ,1) s4 SC. 3 EM ( x3 , x3 ) Low(( s5 , s5 , s5 ),(0.2,0.5,0.3)) C (0.2, s5 ),(0.8, Low(( s5 ,1) s5 IM . 2 EM ( x3 , x4 ) Low(( s5 , s4 , s4 ), (0.2, 0.5, 0.3)) C (0.2, s5 ), (0.8, Low(( s4 )(1)) C (0.2, s5 ), (0.8, s4 ) sk (3,4) , k (3, 4) 4 round ((0.2).(5 4)) 4 0 4 sk (3,4) s4 SC. 3 EM ( x4 , x1 ) Low(( s4 , s3 , s3 ), (0.2, 0.5, 0.3)) C (0.2, s4 ), (0.8, Low(( s3 )(1)) C (0.2, s5 ), (0.8, s3 ) sk (4,1) , k (4,1) 3 round ((0.2).(4 3)) 3 0 3 3 EM sk (4,1) s3 VLC. . ( x4 , x2 ) Low(( s6 , s4 , s4 ), (0.2, 0.5, 0.3)) C (0.2, s6 ), (0.8, Low(( s4 )(1)) C (0.2, s6 ), (0.8, s4 ) sk (4,2) , k (4, 2) 4 round ((0.2).(6 4)) 4 0 4 sk (4,2) s4 SC. 3 EM ( x4 , x3 ) Low(( s4 , s4 , s5 ), (0.2, 0.5, 0.3)) C (0.3, s5 ), (0.7, Low(( s4 )(1)) C (0.3, s5 ), (0.7, s4 ) sk (4,3) , Fuzzy Pareto Solution in multi-criteria group decision making k (4,3) 4 round ((0.3).(5 4)) 4 0 4 29 sk (4,3) s4 SC. 3 EM ( x4 , x4 ) Low(( s5 , s5 , s5 ),(0.2,0.5,0.3)) C (0.2, s5 ),(0.8, Low(( s5 ,1) s5 IM . We obtain the linguistic dominance degrees IM VLC EM3 SC VLC ML IM IM SC IM IM IM SC ML IM . SC IM (98) Calculate FCS by Definition 2. 3 fcsM ( x1 ) Low((s7 , s5 ),(2 / 3,1/ 3)) C (2 / 3, s7 ),(1/ 3, s5 ) sk k 5 round ((2 / 3).(7 5)) 5 1 6 sk s6 MC . 3 fcsM ( x2 ) Low((s5 , s3 ),(2 / 3,1/ 3)) C (2 / 3, s5 ),(1/ 3, s3 ) sk , k 3 round ((2 / 3).(5 2)) 3 1 4 3 fcsM ( x3 ) sk s4 SC . Low(( s4 ),(1)) s4 SC. 3 fcsM ( x4 ) Low(( s5 , s4 , s3 ), (1/ 3,1/ 3,1/ 3)) C (1/ 3, s5 ), (2 / 3, Low(( s4 , s3 ), (0.5, 0.5)) C (1/ 3, s5 ), (2 / 3, s4 ) sk , since Low((s4 , s3 ),(0.5,0.5)) sk ' , k ' 3 round ((0.5).(4 3)) 3 1 4 sk , s4 , k 4 round ((1/ 3).(5 4)) 4 0 4 We obtain sk s4 SC . 3 FCSM MC / x1, SC / x2 , SC / x3 , SC / x4 . (99) 1.3.b. Use the linguistic non-preference relations SC SC VLC SC SC SC V13 IM VLC SC SC IM SC SC SC VLC SC VLC SC VLC IM SC SC IM SC VLC VLC V23 V33 IM IM SC SC SC SC SC SC MC VLC VLC SC SC SC , , SC VLC SC VLC SC IM SC SC Calculate the linguistic non-dominance degrees: EV3 ( xi , x j ) Low(S ,UV 3 ) , i,j =1,..,4 . (100) 30 Bui Cong Cuong, Vladik Kreinovich, Le Hoang Son, Nilanjan Dey UV 3 u3T ,..., u31 , with u3t Wij (st ) w(k ) : Vk 3 (i, j ) st , k t=1,..., T. (101) EV3 ( x1, x1 ) Low(( s4 , s4 , s4 ), (0.2, 0.5, 0.3)) C (0.2, s4 ), (0.8, Low(( s4 ), (1)) C (0.2, s4 ), (0.8, s4 ) s4 SC. EV3 ( x1, x2 ) Low(( s4 , s3 , s3 ), (0.2, 0.5, 0.3)) C (0.2, s4 ), (0.8) Low(( s3 )(1)) C (0.2, s4 ), (0.8, s3 ) sk (1,2) . k (1, 2) 3 round ((0.2).(4 3)) 3 0 3 sk (2,1) s3 VLC. EV3 ( x1, x3 ) Low(( s3 , s4 , s4 ), (0.2, 0.5, 0.3)) C (0.5, s4 ), (0.5) Low(( s4 , s3 )(3/ 5, 2 / 5)) C (0.5, s4 ), (0.5, s4 ) s4 SC , since Low((s4 , s3 ),(3/ 5, 2 / 5)) sk ' , k ' 3 round ((3/ 5).(4 3)) 3 1 4 sk , s4. EV3 ( x1, x4 ) Low(( s4 , s3 , s3 ), (0.2, 0.5, 0.3)) C (0.2, s4 ), (0.8) Low(( s3 )(1)) C (0.2, s4 ), (0.8, s3 ) sk (1,4) . k (1, 4) 3 round ((0.2).(4 3)) 3 0 3 sk (1,4) s3 VLC. EV3 ( x2 , x1 ) Low(( s4 , s5 , s5 ), (0.2, 0.5, 0.3)) C (0.5, s5 ), (0.5) Low(( s5 , s4 )(3/ 5, 2 / 5)) C (0.5, s5 ), (0.5, s5 ) s5 IM , since Low((s5 , s4 ),(3/ 5, 2 / 5)) sk ' , k ' 4 round ((3/ 5).(5 4)) 4 1 5. EV3 ( x2 , x2 ) Low(( s4 , s4 , s4 ), (0.2, 0.5, 0.3)) C (0.2, s4 ), (0.8, Low(( s4 ), (1)) C (0.2, s4 ), (0.8, s4 ) s4 SC. Fuzzy Pareto Solution in multi-criteria group decision making 31 EV3 ( x2 , x3 ) Low(( s4 , s3 , s4 ), (0.2, 0.5, 0.3)) C (0.5, s4 ), (0.5, s3 ) sk (2,3) , k (2,3) 3 round ((0.5).(4 3)) 3 1 4, sk (2,3) s4 SC. EV3 ( x2 , x4 ) Low((s4 , s3 , s3 ), (0.2, 0.5, 0.3)) C (0.2, s4 ), (0.8)Low ((s3 )(1)) C (0.2, s4 ), (0.8, s3 ) sk (2,4) . k (2, 4) 3 round ((0.2).(4 3)) 3 0 3 sk (2,4) s3 VLC. EV3 ( x3 , x1 ) Low(( s5 , s5 , s4 ), (0.2, 0.5, 0.3)) C (0.2, s5 ), (0.8) Low(( s5 , s4 )(5 / 8,3/ 8)) C (0.2, s5 ), (0.8, s5 ) sk (3,1) . since Low((s5 , s4 ),(5 / 8,3/ 8)) sk ' , k ' 4 round ((5 / 8).(5 4)) 4 1 5, k (3,1) 5 round ((0.2).(5 5)) 5 0 5 sk (3,1) s5 IM . EV3 ( x3 , x2 ) Low(( s3 , s5 , s4 ), (0.2, 0.5, 0.3)) C (0.2, s3 ), (0.8, Low(( s5 , s4 ), (5 / 8,3/ 8)) C (0.2, s4 ), (0.8, s5 ) sk (3,2) , since Low((s5 , s4 ),(5 / 8,3/ 8)) sk ' , k ' 4 round ((5 / 8).(5 4)) 4 1 5, k (3, 2) 4 round ((0.8).(5 4)) 4 1 5 sk (3,2) s5 IM . EV3 ( x3 , x3 ) Low(( s4 , s4 , s4 ), (0.2, 0.5, 0.3)) C (0.2, s4 ), (0.8, Low(( s4 ), (1)) C (0.2, s4 ), (0.8, s4 ) s4 SC. EV3 ( x3 , x4 ) Low(( s4 , s4 , s5 ), (0.2, 0.5, 0.3)) C (0.3, s5 ), (0.8) Low(( s4 )(1)) C (0.2, s5 ), (0.8, s4 ) sk (3,4) . k (3, 4) 4 round ((0.2).(5 4)) 4 0 4 sk (3,4) s4 SC. EV3 ( x4 , x1 ) Low(( s5 , s6 , s4 ), (0.2, 0.5, 0.3)) C (0.5, s6 ), (0.5) Low(( s5 , s4 )(2 / 5,3/ 5)) C (0.5, s6 ), (0.5, s4 ) sk (4,1) . 32 Bui Cong Cuong, Vladik Kreinovich, Le Hoang Son, Nilanjan Dey since Low((s5 , s4 ),(2 / 5,3/ 5)) sk ' , k ' 4 round ((2 / 5).(5 4)) 4 0 4, k (4,1) 4 round ((0.5).(6 4)) 4 1 5 sk (4,1) s5 IM . EV3 ( x4 , x2 ) Low(( s4 , s3 , s4 ), (0.2, 0.5, 0.3)) C (0.2, s4 ), (0.8) Low(( s4 , s3 )(3/ 8,5 / 8)) C (0.2, s4 ), (0.8, s3 ) sk (4,2) . since Low((s4 , s3 ),(3/ 8,5 / 8)) sk ' , k ' 3 round ((3/ 8).(5 4)) 3 0 3, k (4, 2) 3 round ((0.2).(4 3)) 3 0 3 sk (4,2) s3 VLC. EV3 ( x4 , x3 ) Low(( s4 , s3 , s4 ), (0.2, 0.5, 0.3)) C (0.2, s4 ), (0.8) Low(( s4 , s3 )(3/ 8,5 / 8)) C (0.2, s4 ), (0.8, s3 ) sk (4,3) . since Low((s4 , s3 ),(3/ 8,5 / 8)) sk ' , k ' 3 round ((3/ 8).(5 4)) 3 0 3, k (4, 2) 3 round ((0.2).(4 3)) 3 0 3 sk (4,2) s3 VLC. EV2 ( x4 , x4 ) Low(( s4 , s4 , s4 ), (0.2, 0.5, 0.3)) C (0.2, s4 ), (0.8, Low(( s4 ), (1)) C (0.2, s4 ), (0.8, s4 ) s4 SC. We obtain the linguistic non-dominance degree SC VLC SC VLC IM SC VLC VLC . EV3 IM SC SC SC IM VLC VLC SC (102) Calculate FCS by Definition 2. fcsV3 ( x1 ) Low((s4 , s3 ),(1/ 3, 2 / 3)) C (1/ 3, s4 ),(2 / 3, s3 ) sk , k 3 round ((1/ 3).(4 3)) 3 0 3 sk s3 SC fcsV3 ( x1) SC. Fuzzy Pareto Solution in multi-criteria group decision making 33 fcsV3 ( x2 ) Low(( s5 , s4 , s3 ), (1/ 3, 2 / 3)) C (1/ 3, s5 ), (2 / 3, Low(( s4 , s3 ), (0.5, 0.5)) C (1/ 3, s5 ), (2 / 3, s4 ) sk , since Low((s4 , s3 ),(0.5,0.5)) sk ' , k ' 3 round ((0.5).(4 3)) 3 1 4 sk , s4 k 4 round ((1/ 3).(5 4)) 4 0 4 sk s4 SC. fcsV3 ( x3 ) Low((s5 , s4 ),(2 / 3,1/ 3)) C (2 / 3, s5 ),(1/ 3), s4 ) sk , k 4 round ((2 / 3).(5 4)) 4 1 5 sk s5 IM fcsV3 ( x) IM . fcsV3 ( x4 ) Low((s5 , s3 ),(1/ 3, 2 / 3)) C (1/ 3, s5 ),(2 / 3, s3 ) sk , k 3 round ((1/ 3).(5 4)) 3 0 3 We obtain sk s3 VLC fcsV3 ( x4 ) VLC. FCSV3 VLC / x1 , SC / x2 , IM / x3 ,VLC / x4 (103) Finally, we obtain IFE for criterion C3 IFE 3 ( MC, VLC) / x1 , ( SC, SC) / x2 , ( SC, IM ) / x3 , ( SC, VLC) / x4 (104) and the FPS for criterion C3 is x1 . Step2. Use {( FCSMl , FCSVl ), l 1, 2,3} and the criteria’s important weights 0.35,0.4,0.25 , calculate the aggregated fuzzy collective solutions (aFCS) as in Definition 3. where where aFCS afcs( x1 ) / x1 ,..., afcs( xn ) / xn , afcsM ( xi ) Low(S ,U M ) , (105) i=1,…,n (106) l U M uM T ,..., uM 1 , t=1, ...T, U M t l l : fcsM ( xi ) st (107) Calculate afcsM ( x1 ). Because 2 3 fcs1M ( x1 ) s5 , fcsM ( x1 ) s6 , fcsM ( x1 ) s6 , 34 Bui Cong Cuong, Vladik Kreinovich, Le Hoang Son, Nilanjan Dey afcsM ( x1 ) Low((s6 , s5 ),(0.65,0.35) C (0.65, s6 ),(0.35, s5 ) sk , k 5 round ((0.65).(6 5)) 5 1 6 sk s6 MC afcsM ( x1 ) MC. Calculate afcsM ( x2 ). Because 2 3 fcs1M ( x2 ) s4 , fcsM ( x2 ) s4 , fcsM ( x2 ) s4 , afcsM ( x2 ) Low(( s4 ),(1) s4 SC. Calculate afcsM ( x3 ). Because 2 3 fcs1M ( x3 ) s4 , fcsM ( x3 ) s4 , fcsM ( x3 ) s4 , afcsM ( x3 ) Low((s4 ),(1) s4 SC. Calculate afcsM ( x4 ). Because 2 3 fcs1M ( x4 ) s7 , fcsM ( x4 ) s5 , fcsM ( x4 ) s4 , afcsM ( x4 ) Low(( s7 , s5 , s4 ), (0.35, 0.4, 0.25) C (0.35, s7 ), (0.65, Low(( s5 , s4 ), (0.4 / 0.65, 0.25 / 0.65)) C (0.35, s7 ), (0.65, s5 ) sk , since Low((s5 , s4 ),(0.4 / 0.65,0.25 / 0.65)) sk ' , k ' 4 round ((0.4 / 0.65).(5 4)) 4 1 5 sk , s5 , k 5 round ((0.35).(7 5)) 5 1 6 sk s6 MC afcsM ( x4 ) MC. Fina lly, we obtain Calculate where where aFCSM {MC / x1 , SC / x2 , SC / x3 , MC / x4 }. (108) aFCSV afcsV ( x1 ) / x1 ,..., afcsV ( x4 ) / x4 , (109) afcsV ( xi ) Low(S ,UV ) , UV uV T ,..., uV 1 , i=1,2,3,4 t=1, ...T, UV t l l : fcsVl ( xi ) st . Calculate afcsV ( x1 ). Because (110) (111) 2 3 fcs1M ( x1 ) s3 , fcsM ( x1 ) s3 , fcsM ( x1 ) s3 , afcsV ( x1 ) Low((s3 ),(1)) s3 VLC. Calculate afcsV ( x2 ). Because fcsV1 ( x2 ) s4 , fcsV2 ( x2 ) s4 , fcsV3 ( x2 ) s3 , afcsM ( x2 ) Low((s4 , s2 ),(0.65,0.35) sk , Fuzzy Pareto Solution in multi-criteria group decision making k 2 round ((0.65).(4 2)) 2 1 3 35 sk s3 VLC afcsV ( x2 ) VLC. fcsV1 ( x3 ) s4 , fcsV2 ( x3 ) s4 , fcsV3 ( x3 ) s5 , afcsV ( x3 ). Because afcsV ( x3 ) Low(( s5 , s4 ),(0.25,0.75) C (0.25, s5 ),(0.75, s4 ) sk , Calculate k 4 round ((0.25).(5 4)) 4 0 4 Calculate afcsV ( x4 ). Because sk s4 SC afcsV ( x3 ) SC. fcsV1 ( x4 ) s2 , fcsV2 ( x4 ) s4 , fcsV3 ( x4 ) s3 , afcsV ( x4 ) Low(( s4 , s3 , s2 ), (0.35, 0.4, 0.25) C (0.35, s4 ), (0.65, Low(( s3 , s2 ), (0.4 / 0.65, 0.25 / 0.65)) C (0.35, s4 ), (0.65, s3 ) sk , since Low((s3 , s2 ),(0.4 / 0.65,0.25 / 0.65)) sk ' , k ' 2 round ((0.4 / 0.65).(3 2)) 2 1 3 sk , s3 , k 3 round ((0.35).(4 3)) 3 0 3 We obtain sk s3 VLC afcsV ( x4 ) VLC. aFCSV {VLC / x1 , VLC / x2 , SC / x3 , VLC / x4}. (112) Finally, we obtain Aggregated Intuitionistic Fuzzy Evaluation (aIFE) aIFE {( MC,VLC) / x1 ,( SC, VLC) / x2 ,( SC, SC) / x3 ,( MC, VLC) / x4 }. The Aggregated Fuzzy Pareto Solution (aFPS) are (113) x1 , x4 . 7.2. Computing with the aggregation procedure 2 Step 1. l For each criterion C , l=1,2,3 calculate the linguistic dominance degrees as in (51, 53) we obtain: E1M IM ML MC SC IM IM SC IM IM ML IM EL EU IM IM ML MC MC VLC SC IM IM SC EU 3 2 EM EM SC EU VLC IM IM SC IM SC SC MC IM VLC , , ML IM VLC VLC VLC SC SC VLC SC , 3 VLC EV SC SC SC SC SC VLC SC VLC ML IM IM SC IM IM IM SC ML IM SC IM and SC VLC VLC EU SC VLC 1 EV VLC IM SC EU VLC EU SC SC EU , 2 IM EV IM EU SC IM Step 2. 2.a1. Using these relations of linguistic relative dominance degrees the important weights relation: 0.35,0.4,0.25 , SC SC IM SC IM SC E 1 M ML IM SC SC , EM2 , EM3 and calculate the totally social opinion 36 Bui Cong Cuong, Vladik Kreinovich, Le Hoang Son, Nilanjan Dey QM qM ( xi , x j ) , i 1,..., 4, j 1,..., 4. (114) where qM ( xi , x j ) Low( S ,U qM ) , U qM uqT ,..., uq1 , (115) where l uqt Wijq (st ) l l : EM (i, j ) st ,t=1,...,T . (116) qM ( x1, x1) Low((s5 , s5 , s5 ),(0.35,0.4,0.25)) Low(( s5 ),(1)) s5 IM . qM ( x1, x2 ) Low((s7 , s6 , s7 ),(0.35,0.4,0.25)) Low((s7 ,0.6),( s6 ,0.4)) sk (1,2) , k (1, 2) 6 round ((0.6).(7 6)) 6 1 7 sk (1,2) s7 ML qM ( x1, x2 ) ML. . qM ( x1, x3 ) Low((s6 , s6 , s5 ),(0.2,0.5,0.3)) C (0.7, s6 ),(0.3, s5 ) sk (1,3) , k (1,3) 5 round ((0.7).(6 5)) 5 1 6 sk (1,3) s6 MC. qM ( x1 , x4 ) Low(( s2 , s6 , s7 ), (0.35, 0.4, 0.25)) C (0.25, s7 ), (0.75, Low (( s6 , s2 ), (40 / 75,35 / 75)) C (0.25, s7 ), (0.75, s4 ) sk (1,4) , since Low((s6 , s2 ),(40 / 75, 25 / 75)) sk ' , k ' 2 round ((40 / 75).(6 2)) 2 2 4 sk , s4 , k (1, 4) 4 round ((0.25).(7 4)) 4 1 5 sk (1,4) s5 IM . . qM ( x2 , x1 ) Low((s4 , s4 , s3 ),(0.35,0.4,0.25)) C (0.75, s4 ),(0.25, s3 ) sk (2,1) , k (2,1) 3 round ((0.75).(4 3)) 3 1 4 sk (2,1) s4 SC. . qM ( x2 , x2 ) Low((s5 , s5 , s5 ),(0.35,0.4,0.25)) Low((s5 ),(1)) s5 IM . qM ( x2 , x3 ) Low((s5 , s5 , s5 ),(0.35,0.4,0.25)) Low(( s5 ),(1)) s5 IM . qM ( x2 , x4 ) Low(( s2 , s4 , s5 ), (0.35, 0.4, 0.25)) C (0.25, s5 ), (0.75, Low((s4 , s2 ), (40 / 75,35 / 75)) C (0.25, s5 ), (0.75, s3 ) sk (2,4) , since Low((s4 , s2 ),(40 / 75, 25 / 75)) sk ' , k ' 2 round ((40 / 75).(4 2)) 2 1 3 sk , s3 , k (2, 4) 3 round ((0.25).(5 3)) 3 1 4 sk (2,4) s4 SC. qM ( x3 , x1 ) Low((s4 , s3 , s4 ),(0.35,0.4,0.25)) C (0.6, s4 ),(0.4, s3 ) sk (3,1) , Fuzzy Pareto Solution in multi-criteria group decision making k (3,1) 3 round ((0.6).(4 3)) 3 1 4 37 sk (3,1) s4 SC. qM ( x3 , x2 ) Low((s5 , s4 , s4 ),(0.35,0.4,0.25)) C (0.35, s5 ),(0.65, s4 ) sk (3,2) , k (3, 2) 4 round ((0.35).(5 4)) 4 0 4 sk (3,2) s4 SC. qM ( x3 , x3 ) Low((s5 , s5 , s5 ),(0.35,0.4,0.25)) Low(( s5 ),(1)) s5 IM . qM ( x3 , x4 ) Low((s2 , s4 , s4 ),(0.35,0.4,0.25)) C (0.65, s4 ),(0.35, s2 ) sk (3,4) , k (3, 4) 2 round ((0.65).(4 2)) 2 1 3 sk (3,4) s3 VLC. qM ( x4 , x1 ) Low(( s7 , s4 , s3 ), (0.35, 0.4, 0.25)) C (0.25, s7 ), (0.75, Low((s4 , s3 ), (40 / 75,35 / 75)) C (0.25, s7 ), (0.75, s4 ) sk (4,1) , since Low((s4 , s3 ),(40 / 75, 25 / 75)) sk ' , k ' 3 round ((40 / 75).(4 3)) 3 1 4 sk , s4 , k (4,1) 4 round ((0.25).(7 4)) 4 1 5 sk (1,4) s5 IM . qM ( x4 , x2 ) Low((s5 , s4 , s5 ),(0.35,0.4,0.25)) C (0.6, s5 ),(0.4, s4 ) sk (4,2) , k (4, 2) 4 round ((0.6).(5 4)) 4 1 5 sk (4,2) s5 IM . qM ( x4 , x3 ) Low(( s8 , s6 , s4 ), (0.35, 0.4, 0.25)) C (0.35, s8 ), (0.65, Low((s6 , s4 ), (40 / 65, 25 / 65)) C (0.35, s8 ), (0.65, s5 ) sk (4,3) , Low(( s6 , s4 ), (40 / 65, 25 / 65)) sk ' , k ' 4 round ((40 / 75).(6 4)) 4 1 5 sk , s5 , k (4,3) 5 round ((0.35).(8 5)) 5 1 6 sk (4,3) s6 MC. qM ( x4 , x4 ) Low((s5 , s5 , s5 ),(0.35,0.4,0.25)) Low(( s5 ),(1)) s5 IM . We obtain the totally social opinion relation QM IM SC SC IM IM SC . VLC MC IM ML MC IM IM IM IM IM 2.a2. Using these relations of linguistic non-dominance degrees (117) E , E , E and the 1 V 2 V 3 V important weights 0.35,0.4,0.25 , calculate the totally social opinion relation 38 Bui Cong Cuong, Vladik Kreinovich, Le Hoang Son, Nilanjan Dey QV qV ( xi , x j ) , i 1,..., 4, j 1,..., 4. U qM uqT ,..., uq1 where qV ( xi , x j ) Low(S ,U qV ) , where uqt Wijq (st ) l l : EVl (i, j ) st , (118) t=1,...,T . (119) (120) qV ( x1, x1 ) Low(( s4 , s4 , s4 ),(0.35,0.4,0.25)) Low(( s4 ),(1)) s4 SC. qV ( x1, x2 ) Low((s3 , s3 , s3 ),(0.35,0.4,0.25)) Low(( s3 ),(1)) s3 VLC. qV ( x1, x3 ) Low(( s3 , s3 , s4 ), (0.35, 0.4, 0.25)) C (0.25, s4 ), (0.75, s3 ) sk (1,3) , k (1,3) 3 round ((0.25).(4 3)) 3 0 3 sk (1,3) s3 VLC. qV ( x1 , x4 ) Low((s4 , s3 , s3 ), (0.35, 0.4, 0.25)) C (0.35, s4 ), (0.65, s3 ) sk (1,4) , sk (1,4) 3 round ((0.35).(4 3)) 3 0 3 sk (1,4) s3 VLC . qV ( x2 , x1 ) Low(( s2 , s5 , s5 ), (0.35, 0.4, 0.25)) C (0.75, s5 ), (0.25, s2 ) sk (2,1) , k (2,1) 2 round ((0.75).(5 2)) 2 2 4, sk (2,1) s4 SC. qV ( x2 , x2 ) Low((s4 , s4 , s4 ),(0.35,0.4,0.25)) Low(( s4 ),(1)) s4 SC. qV ( x2 , x3 ) Low((s3 , s3 , s3 ),(0.35,0.4,0.25)) Low(( s3 ),(1)) s3 VLC. qV ( x2 , x4 ) Low(( s2 , s4 , s3 ), (0.35, 0.4, 0.25)) C (0.4, s4 ), (0.6, Low(( s3 , s2 ), (25 / 60,35 / 60)) C (0.25, s5 ), (0.6, s2 ) sk (2,4) , since Low((s3 , s2 ),(25 / 60,35 / 60)) sk ' , k ' 2 round ((25 / 60).(3 2)) 2 0 2 sk , s2 , k (2, 4) 2 round ((0.25).(5 2)) 2 1 3 sk (2,4) s3 VLC. qV ( x3 , x1 ) Low(( s3 , s5 , s5 ), (0.35, 0.4, 0.25)) C (0.65, s5 ), (0.35, s3 ) sk (3,1) , k (3,1) 3 round ((0.65)(5 3)) 3 1 4, sk (3.1) s4 SC. qV ( x3 , x2 ) Low(( s5 , s4 , s4 ),(0.35,0.4,0.25)) C (0.35, s5 ),(0.65, s4 ) sk (3,2) , k (3, 2) 4 round ((0.35).(5 4)) 4 0 4 sk (3,2) s4 SC. qV ( x3 , x3 ) Low((s4 , s4 , s4 ),(0.35,0.4,0.25)) Low(( s4 ),(1)) s4 SC. Fuzzy Pareto Solution in multi-criteria group decision making 39 qV ( x3 , x4 ) Low(( s2 , s4 , s4 ), (0.35, 0.4, 0.25)) C (0.65, s4 ), (0.35, s2 ) sk (3,4) , k (3, 4) 2 round ((0.65).(4 2)) 2 1 3, sk (3,4) s3 VLC. qV ( x4 , x1 ) Low(( s2 , s5 , s5 ), (0.35, 0.4, 0.25)) C (0.65, s5 ), (0.35, s2 ) sk (4,1) , k (4,1) 2 round ((0.65).(5 2)) 2 2 4, sk (4,1) s4 SC. qV ( x4 , x2 ) Low((s3 , s3 , s3 ),(0.35,0.4,0.25)) Low(( s3 ),(1)) s3 VLC. qV ( x4 , x3 ) Low(( s2 , s3 , s3 ), (0.35, 0.4, 0.25)) C (0.65, s3 ), (0.35, s2 ) sk (4,3) , k (4,3) 2 round ((0.65).(3 2)) 2 1 3, sk (4,3) s3 VLC. qV ( x4 , x4 ) Low((s4 , s4 , s4 ),(0.35,0.4,0.25)) Low(( s4 ),(1)) s4 SC. We obtain the totally social opinion relation preference relations: SC SC SC VLC SC SC QV SC SC SC VLC SC VLC using intuitionistic linguistic nonSC SC . VLC SC 2.b. Using QM , QV ,calculate the fuzzy collective solution , calculate (121) FCSQM fcsQM ( x1 ) / x1, fcsQM ( x2 ) / x2 , fcsQM ( x3 ) / x3 , fcsQM ( x4 ) / x4 , (122) fcsQM ( x1 ) Low(( s7 , s6 , s5 ), (1/ 3,1/ 3,1/ 3)) C (1/ 3, s7 ), (2 / 3, Low(( s6 , s5 ), (0.5, 0.5)) C (1/ 3, s7 ), (2 / 3, s6 ) k (1), since Low((s6 , s5 ),(0.5,0.5)) C ((0.5, s6 ),(0.5, s5 )} sk ' , k ' 5 round ((0.5).(6 5)) 5 1 6, k (1) 6 round ((1/ 3).(7 6)) 6 0 6 sk (1) s6 MC. fcsQM ( x2 ) Low(( s5 , s4 ), (1/ 3, 2 / 3)) C ((1/ 3, s5 ), (2 / 3, s4 )} sk (2) , k (2) 4 round ((1/ 3).(5 4)) 4 0 4, sk (2) s4 SC. fcsQM ( x3 ) Low(( s5 , s4 , s3 ), (1/ 3,1/ 3,1/ 3)) C{(1/ 3, s5 ), (2 / 3, Low(( s4 , s3 ), (0.5, 0.5))} C (1/ 3, s5 ), (2 / 3, s4 ) sk , k 4 round ((1/ 3).(5 4)) 4 0 4, sk s4 SC. fcsQM ( x4 ) Low(( s6 , s5 ), (1/ 3, 2 / 3)) C{(1/ 3, s6 ), (2 / 3, s5 )} sk , k 5 round ((1/ 3).(6 5)) 5 0 5, sk s5 IM . 40 Bui Cong Cuong, Vladik Kreinovich, Le Hoang Son, Nilanjan Dey and FCSQM MC / x1 , SC / x2 , SC / x3 , IM / x4 . Calculate the FCSQV fcsQV ( x1 ) / x1, fcsQV ( x2 ) / x2 , fcsQV ( x3 ) / x3 , fcsQV ( x4 ) / x4 , . fcsQV ( x1 ) Low((s3 ), (1))) s3 VLC. fcsQV ( x2 ) Low(( s4 , s3 ), (2 / 3,1/ 3)) C ((2 / 3, s4 ), (1/ 3, s3 )} sk (2) , k (2) 3 round ((2 / 3).(4 3)) 3 1 4, sk (2) s4 SC. fcsQV ( x3 ) Low((s4 , s3 ),(2 / 3,1/ 3)) C{(2 / 3, s4 ),(1/ 3, s3 )} sk (3) , k (3) 3 round ((2 / 3).(4 3)) 3 1 4 sk (3) s4 SC. fcsQV ( x4 ) Low((s4 , s3 ),(1/ 3, 2 / 3)) C{(1/ 3, s4 ),(2 / 3, s3 )} sk (4) , k (4) 3 round ((1/ 3).(4 3)) 3 0 3 We obtain sk (4) s3 VLC. FCSQV VLC / x1 , SC / x2 , SC / x3 , VLC / x4 . Finally, we obtain Intuitionistic Fuzzy Evaluation: IFEQ ( MC,VLC) / x1 ,( SC, SC) / x2 ,( SC, SC) / x3 ,( IM , VLC) / x4 . From IFEQ we choose the FPS of the problem. The Fuzzy Pareto Solution of the problem is x1 . 7.3. Computing with the Aggregation procedure 3 Step 1.1. Computing for expert e1 Use IM SC M 11 VLC EL MC IM MC IM with the weights IM EU VLC SC VLC , M 12 VLC IM EU ML IM SC ML MC ML IM SC SC IM IM MC (0.35,0.4,0.25), calculate IM IM SC SC , M 13 VLC EU IM SC MC ML IM SC MC IM MC SC IM SC IM IM FMk ( xi , x j ) Low(S ,U Mk ), i ,j=1,2,3,4 using (70, 71), we obtain the relative dominance degrees according to e1 Fuzzy Pareto Solution in multi-criteria group decision making IM SC FM1 VLC IM MC IM IM IM 41 SC SC , VLC MC IM ML SC IM 1 and using (72, 73) calculate the fuzzy evaluation FEM FEM1 MC / x1 , SC / x2 , SC / x3 , IM / x4 . Use SC EU V11 IM EU SC VLC VLC SC VLC SC EU SC SC VLC SC SC SC VLC EU , IM VLC SC , V SC SC V12 13 MC SC IM VLC SC SC SC SC SC MC SC VLC SC SC MC MC VLC SC IM SC with the weights SC SC SC SC (0.35,0.4,0.25) . Calculate FVk ( xi , x j ) Low(S ,UVk ), ,j=1,2,3,4 . Using (74, 75), we obtain the relative non-dominance degree according to e1 SC VLC FV1 IM SC SC VLC VLC SC SC VLC , SC SC IM SC VLC SC and using (76) calculate the fuzzy evaluation FEV1 FEV1 VLC / x1 , VLC / x2 , IM / x3 , SC / x4 . Finally, we obtain IFE according to e1 (MC,VLC) / x1,(SC,VLC) / x2 ,(SC, IM ) / x3 ,( IM , SC) / x4 , and the FPS according to e1 is x1 . Step 1.2. Computing for expert e2 Use M 21 IM ML MC SC IM MC SC SC IM ML IM EL EU IM SC EU , M 22 VLC EU IM SC ML MC IM SC IM IM MC MC MC IM VLC SC , M 23 SC SC IM VLC ML IM IM MC IM SC SC SC using (70, 71), we obtain the relative dominance degrees according to e 2 ML IM . SC IM i 42 Bui Cong Cuong, Vladik Kreinovich, Le Hoang Son, Nilanjan Dey IM SC FM2 SC IM and the fuzzy evaluation SC SC , VLC MC IM ML MC IM IM IM IM IM FEM2 is FEM2 MC / x1 , SC / x2 , SC / x3 , IM / x4 . Use SC EU V21 VLC EU SC SC VLC SC VLC SC EU VLC VLC IM IM SC VLC SC SC VLC EU , SC VLC VLC . , V23 V22 IM IM MC SC VLC IM SC SC SC SC VLC EU VLC SC MC VLC VLC SC SC VLC VLC SC EU VLC Using (74, 75), we obtain the relative non-dominance degree according to e2 SC EU VLC VLC SC SC VLC VLC , FV2 SC IM SC VLC SC VLC VLC SC and the fuzzy evaluation FEV2 FEV2 VLC / x1 , VLC / x2 , SC / x3 , VLC / x4 . Finally, we obtain IFE according to e2 (MC,VLC) / x1, (SC,VLC) / x2 , (SC, SC) / x3 , ( IM ,VLC) / x4 and using (76), the FPS according to e2 is x1 . Step 1.3. Computing for expert e3 Use IM MC SC IM M 31 SC MC ML IM MC SC IM EL EU IM SC EU , M 32 VLC EU IM SC IM IM SC SC MC MC IM SC MC IM , M 33 IM IM VLC IM IM VLC ML SC IM SC MC IM SC IM using (70, 71), we obtain the relative dominance degrees according to e 3 MC IM . SC IM Fuzzy Pareto Solution in multi-criteria group decision making IM SC FM3 SC IM and the fuzzy evaluation IM SC , VLC MC IM MC MC IM IM IM IM SC FEM3 FEM3 MC / x1 , SC / x2 , SC / x3 , IM / x4 . Use SC EU V31 EU EU SC SC SC SC SC SC SC I SC SC IM EU , V32 SC I SC MC SC VLC SC VLC SC SC SC SC EU SC VLC IM SC SC , V33 SC SC SC SC SC SC SC VLC SC VLC . SC IM SC SC Using (74, 75), we obtain the relative non-dominance degree according to e3 SC SC FV3 VLC SC and the fuzzy evaluation VLC SC SC VLC , SC SC VLC SC VLC SC SC SC FEV3 is FEV3 SC / x1 , SC / x2 , VLC / x3 , SC / x4 . Finally, we obtain IFE according to e3 (MC, SC) / x1, (SC, SC) / x2 , (SC,VLC) / x3 , ( IM , SC) / x4 , and the FPS according to e3 is x1, x3 . Step 2. Use the fuzzy evaluation (FE k M , FEVk ), k 1, 2,3 and the weights {w(k): ekE}, calculate the aggregated fuzzy evaluation (aFE). aFEM MC / x1 , SC / x2 , SC / x3 , IM / x4 , aFEV VLC / x1 ,VLC / x2 , SC / x3 , SC / x4 . We obtain the aggregated intuitionistic fuzzy evaluation (aIFE). aIFE (MC,VLC ) / x1 ,( SC,VLC) / x2 ,( SC, SC) / x3 ,( IM , SC) / x4 . Finally, the aFPS of the problem is x1 . 43 44 Bui Cong Cuong, Vladik Kreinovich, Le Hoang Son, Nilanjan Dey 8. Conclusions This paper focuses on multi criteria group decision making problem under linguistic assessments. The linguistic preference relations model forms a useful tool in representing decision makers’ choices. Some aggregation operators and computing processes using Fuzzy Collective Solution were given in Sections 3 and 4. Then, we proposed a new approach based on the new concept of Fuzzy Pareto Solution for the group decision making based on intuitionistic linguistic preference relations. Some aggregation procedures for the FPS and a computing example were also proposed. In the future, we will further investigate various aggregation procedures in the situations with type-2 intuitionistic fuzzy preference information. APPENDIX IM SC M 11 VLC EL IM VLC M 12 VLC SC IM SC M 13 VLC SC SC EU V11 IM EU MC IM MC IM MC IM SC IM MC IM SC MC SC SC SC SC EU IM SC SC VLC , M 21 SC IM EU ML IM ML ML IM IM SC SC SC , M 22 VLC IM EU MC IM SC ML IM IM VLC MC SC , M 23 SC IM IM SC IM VLC VLC VLC SC EU VLC EU , V21 VLC SC SC VLC SC EU ML IM EU SC EU , M 31 SC EU EL IM ML MC MC IM SC IM SC , M 32 VLC IM SC MC IM SC IM ML IM SC IM IM , M 33 IM SC SC SC IM VLC VLC SC SC EU VLC EU , V31 EU SC VLC VLC SC EU ML MC MC MC IM SC IM MC SC IM IM EL IM ML IM SC MC ML IM MC SC EU SC MC EU MC IM SC VLC SC EU SC EU VLC SC SC IM VLC , V IM SC VLC V12 22 MC SC IM SC SC MC SC MC MC VLC SC SC VLC VLC SC SC VLC SC SC VLC SC SC SC SC SC , V IM SC VLC V13 23 IM VLC SC SC IM IM SC SC SC IM SC MC VLC VLC VLC SC IM SC , V32 SC VLC SC MC SC VLC IM VLC , V33 SC SC SC SC IM MC IM SC MC IM SC IM ML SC IM SC MC IM SC IM EU EU , EU IM MC IM , VLC IM MC IM , SC IM SC EU , I SC I SC SC VLC EU SC VLC SC , SC SC SC SC SC SC SC SC SC SC SC SC VLC SC SC SC SC VLC SC VLC . SC IM SC SC References Atanassov, K. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Physica-Verlag. Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy sets and Systems, 20(1), 87-96. Chen, S. J., & Hwang, C. L. (1992). Fuzzy multiple attribute decision making methods. In Fuzzy Multiple Attribute Decision Making (pp. 289-486). Springer Berlin Heidelberg. Fuzzy Pareto Solution in multi-criteria group decision making 45 Cheng, C. H. (1999). A simple fuzzy group decision making method. In Fuzzy Systems Conference Proceedings, 1999. FUZZ-IEEE'99. 1999 IEEE International (Vol. 2, pp. 910-915). Delgado, M., Verdegay, J. L., & Vila, M. A. (1992). Linguistic decision‐making models. International Journal of Intelligent Systems, 7(5), 479-492. Fodor, J. C., & Roubens, M. R. (2013). Fuzzy preference modelling and multicriteria decision support (Vol. 14). Springer Science & Business Media. Gau, W. L., & Buehrer, D. J. (1993). Vague sets. IEEE transactions on systems, man, and cybernetics, 23(2), 610-614. Herrera, F., & Herrera-Viedma, E. (1997). Aggregation operators for linguistic weighted information. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 27(5), 646-656. Herrera, F., Herrera-Viedma, E., & Verdegay, J. L. (1996). Direct approach processes in group decision making using linguistic OWA operators. Fuzzy Sets and systems, 79(2), 175-190. Hong, D. H., & Choi, C. H. (2000). Multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy sets and systems, 114(1), 103-113. Hwang, C. L., & Lin, M. J. (2012). Group decision making under multiple criteria: methods and applications (Vol. 281). Springer Science & Business Media. Llamazares, B. (2007). Choosing OWA operator weights in the field of Social Choice. Information Sciences, 177(21), 4745-4756. Szmidt, E., & Kacprzyk, J. (2002). Using intuitionistic fuzzy sets in group decision making. Control and cybernetics, 31, 1055-1057. Tuy, H. (1998). Convex Analysis and Global Optimization. Kluwer Acad. Press, New York. Xu, Z. (2006). An approach based on the uncertain LOWG and induced uncertain LOWG operators to group decision making with uncertain multiplicative linguistic preference relations. Decision Support Systems, 41(2), 488-499. Xu, Z. (2007). Intuitionistic preference relations and their application in group decision making. Information sciences, 177(11), 2363-2379. Xu, Z., & Yager, R. R. (2006). Some geometric aggregation operators based on intuitionistic fuzzy sets. International journal of general systems, 35(4), 417-433. Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on systems, Man, and Cybernetics, 18(1), 183-190. Zadeh, L.A. (1965). Fuzzy Sets. Information and Control, 8, 338-353.
© Copyright 2026 Paperzz