R. & M. No. 3472 e,l ee~ MINISTRY OF TECHNOLOGY AERONAUTICAL RESEARCH COUNCIL ' REPORTS AND M E M O R A N D A ~0, a ,". " . . . . ~ ~.,'7"< ~. Computer Calculations of Relaxation Regions and Equilibrium Conditions for Shock Waves with Tables for CO2 and N20 ~r, By T. Rees L O N D O N : H E R MAJESTY'S S T A T I O N E R Y O F F I C E 1968 PRICE 5s. 6d. NET Computer Calculations of Relaxation Regions and Equilibrium Conditions for Shock Waves with Tables for CO2 and N20 By T. Rees Reports and Memoranda No. 3472* December, 1965 Johannesen 2 has discussed a Rayleigh-line method for the analysis of vibrational relaxation regions in shock waves. In this method the flow of the real gas in the relaxation region is treated as the flow of an ideal gas (termed the ~-gas by Johannesen) with heat extraction. The Rayleigh-line method is readily adapted for use on a computer; programs based on this method have been used to deal with experimental data for C O 2 - H e mixtures and N 2 0 , and also to provide tables of equilibrium conditions for pure C 0 2 and N 2 0 . Conditions (a) immediately behind the diffusion resisted part of the wave are found using the normal shock relations for the ideal gas and the known conditions (1) in front of the shock wave. The Mach number m, of the a-gas is related to the Mach number Ma of the real gas by rnl = MI (Tx/y~)~ • (1) The total temperature, To1, which does not vary through the diffusion-resisted part of the shock wave, is given by, T o , = TI(1 + ~ y = - 1)mi2). (2) "Fhe flow variables for the a-gas can be expressed in terms of the corresponding quantities at sonic conditions, i.e. at m = 1. This gives the well-known Rayleigh-line relations, T (V~+1)2 m 2 Tb -- (1 +v~m2) 2 ' TO 2(y~+ 1)m2 (1 + ~ y ~ - 1)m2) To---~= (1 + 7~m2)2 ' Pb _ v _ (y~+l)m z p Vb p Pb *Replaces A.R.C. 27 581. 1 + v~m 2 ' ~,+ 1 1 + v~m2 " (3) (4) (5) (6) where suffix (b) denotes sonic conditions, and the symbols have their usual meanings. The conditions (b) can be found from the known conditions (1) using the relations (3) to (6). The increase in vibrational energy at any point in the relaxation region is equal to the energy that has been extracted from the c~-gas, i.e. ~-~ = cp, ( T o - Tol) (7) where ¢r denotes the vibrational energy and ff denotes its local equilibrium value. For the purpose of the computer program it is necessary to obtain an analytic expression for the equilibrium value of the vibrational energy. The simple harmonic oscillator approximation is suitable for most gases. For example, for C02 and N20 we have 2c _ c2 c3 cp, -- cp, ( e x p ( C 1 / T ) - 1 ~ exp(C2/T)-1 ~ exp(Ca/T)-1 t (8) where x is the mole fraction of oscillators present and C1, C2, and C3 are the characteristic temperatures of the various modes. For CO2 these are 959, 1920, and 3380 °K respectively, while for N20 the corresponding values are 847, 1850, and 3200 °K. It was felt that such approximations were sufficiently accurate for evaluating experimental data, the difference between published value (Hilsenrath et aP, McBride, Heimel, Ehlers and Gordon 4) of the vibrational energy and the values given by the harmonic oscillator approximation increasing with temperature to 3 per cent at 5000 °K in the cases of COz and NzO. However, a correction was applied in the preparation of the Tables of equilibrium conditions. It was found that the difference could be expressed as a linear function of temperature, so that ~T = OHO (1 +aT+b). (lO) Here suffix T denotes values obtained from tables and HO those given by the harmonic oscillator expression. Values of a and b were found for CO2 and N20 in the interval 300 to 5000 °K by the method of least squares, and these values are given with the corresponding tables of equilibrium conditions. Where it is necessary to calculate the ratio of the specific heats of the real gas, the contribution, crib, of the vibrational modes to the specific heats was obtained by differentiating equation (10) with respect to T. In the program m is decreased in steps of 0-01 from m,. At each value of m, Tand To are found from (3) and (4) and hence 0 and r/from (10) and (7). This process is continued until a value of m, re(n), is reached where ( 4 - q) becomes negative. A linear interpolation using re(n) and the previous value re(n- 1) gives an approximate value of m2 for which q = ~/. Station (2) is the point at which equilibrium is reached. Values of ~/and ~ corresponding to this value of m2 are calculated and a second interpolation, or extrapolation as the case may be, with re(n- 1) yields a better value for m(2). This is repeated until successive values of m2 differ by less than 0.0001. Equilibrium values of the pressure, temperature, and density are then obtained by substituting m2 into the Rayleigh-line relations. Examples of Tables prepared in this way are given together with h flow diagram of the calculation. Also included in the Tables are values of M* the equilibrium Mach number of the flow of the real gas produced by a shock moving into a gas at rest. It should be noted that the method does not make any use of the relaxation equation. The program was also used to calculate relaxation frequencies at points in the relaxation region from experimental data using the method due to Johannesen, Zienkiewicz, Blythe and Gerrard a. The simple relaxation equation da dt P ~ ( ~ - ~) (11) 2 was used, where • is the relaxation frequency. It was shown that • .may be written tlp = vb Tb " "A(p2-- p) Pb cp~ l.l,m) pb(ff_ tr------~" (12) Here it is assumed that a logarithmic plot of the difference between final and local values of the. density against distance, x, behind the shock-wave is a straight line, i.e. (13) log(p2-- p) = -- Ax d- B. The function L(m) is defined by L(m) = ~ (1-m2). (14) Thus, for a given?value of ml, all the quantities on the right-hand side of equation (12) can be found, except for the value of A which is provided by experiment. Usually • was calculated for five values of m in the interval m, to m2, and hence a plot of O versus local temperature was obtained instead of a single overall value. Acknowledgement. The author is indebted to Professor N. H. Johannesen and Dr. H. K. Zienkiewicz for many helpful discussions. LIST OF SYMBOLS MI Mach number of the shock in the real gas ml Mach number of the shock in the a-gas TI Temperature in front of the shock Pi Pressure in front of the shock Pi Density in front of the shock m2 Value of the equilibrium Mach number relative to the shock in the a-gas M2 Equilibrium Mach number in the real gas of the flow produced by a shock wave moving into a gas at rest T2 Equilibrium temperature P2 Equilibrium pressure P2 Equilibrium density REFERENCES I Hilsenrath et al :. Tables of thermal properties of gases. National Bureau of Standards Circular 564. 1955. 2 N.H. Johannesen .... Analysis of vibrational relaxation regions by means of the Rayleigh-line method. J. Fluid Mech., Vol. 10, pp. 25 to 32. 1961. N. H. Johannesen. . . . . Experimental and theoretical analysis of vibrational relaxation H. K. Zienkiewicz, P. A. Blythe regions in carbon dioxide. and J. H. Gerrard J. Fluid Mech., Vol. 13, pp. 213 to 224. 1962 B. J. McBride, S. Heimel, .. J. G. Ehlers and S. Gordon Thermodynamic properties to 6000 deg K for 210 substances involving the first 18 elements. NASA SP-3001. 1963. Equilibrium Faluesfor Normal Shocks in Carbon Dioxide for T1 = 295 °K. a = 7.8 x 10-6(°K) -1 b = - 6-042 × 10- a M1 ml m2 T2 P2/Pl P2/Pl Pl/P2 M~ 1.1 1.2 1.3 1.4 1-5 1.6 1-7 1.8 1-9 2.0 2"1 2.2 2.3 2.4 2.5 2.6 2"7 2"8 2.9 3.0 3.1 3.2 3.3 3.4 3-5 3.6 3.7 3"8 3'9 4.0 1.056 1.152 1.248 1.344 1.440 1-536 1.632 1.728 1.824 1.920 2.016 2.112 2.208 2"304 2.400 2.496 2.592 2"688 2"784 2-880 2"976 3.072 3.168 3.264 3.360 3.456 3.552 3.648 3.744 3.840 0.8726 0-8025 0-7455 0-6980 0.6579 0.6236 0.5939 0.5680 0.5453 0.5251 0-5072 0-4910 0.4765 0.4633 0.4514 0.4404 0.4304 0.4212 0.4127 0.4048 0.3975 0.3906 0.3843 0'3783 0.3728 0.3675 0.3626 0"3580 0.3536 0.3495 309-6 323.3 336.8 350.2 363.7 377.4 391.5 405-9 420.7 435.9 451.6 467.8 484.4 501-4 518.9 536.9 555"3 574"1 593"4 613"2 633"4 654"0 675.1 696.6 718.6 740.9 763.7 786.9 810.6 834'6 1.240 1-503 1-789 2.098 2-430 2.786 3.165 3.568 3.994 4.444 4-918 5.416 5.937 6.482 7.051 7"645 8.262 8"903 9"568 10.257 10.971 11.708 12.470 13.256 14.066 14"901 15.759 16.642 17.549 18.481 1.181 1.371 1.567 1.767 1.971 2.178 2.385 2.593 2.801 3.007 3.212 3.415 3.616 3.814 4.009 4.201 4"389 4.574 4.756 4.935 5.110 5.281 5.449 5.614 5.775 5.933 6.087 6.239 6.387 6.532 0.8465 0.7294 0.6383 0.5659 0.5073 0.4592 0.4193 0"3856 0.3570 0.3325 0.3113 0.2928 0.2765 0.2622 0.2494 0.2381 0.2278 0.2186 0.2102 0.2027 0"1957 0.1894 0.1835 0.1781 0.1732 0.1686 0.1643 0.1603 0.1566 0.1531 0.1653 0.3117 0.4431 0.5628 0.6727 0.7745 0.8692 0.9577 1.0408 1.1190 1"1928 1.2626 1.3288 1.3917 1.4515 1.5085 1"5629 1.6149 1"6646 1.7122 1.7578 1.8015 1.8435 1-8839 1"9228 1.9601 1.9962 2-0309 2.0644 2.0967 i 5 Equilibrium Valuesfor Normal Shocks in Carbon Dioxide for T1 = 295 °K. a = 7.8 x 10- 6(°K)- 1 b = - 6.042 x 10- 3 Mi ml m2 T2 P2/PI P2/Pl Pi/P2 M~ 4"1 4.2 4"3 4.4 4.5 4.6 4.7 4-8 4.9 5.0 5-1 5.2 5.3 5-4 5.5 5.6 5.7 5.8 5-9 6-0 6.1 6.2 6"3 6.4 6-5 6.6 6-7 6.8 6-9 7.0 7.1 7.2 7.3 7.4 7.5 3"936 4-032 4.128 4.224 4.320 4"416 4.512 4.608 4.704 4.800 4-896 4.992 5.088 5.184 5.280 5.376 5.472 5.568 5.664 5.760 5.856 5.952 6.047 6.143 6.239 6"335 6.431 6.527 6.623 6.719 6.815 6.911 7-007 7-103 7-199 0"3456 0.3418 0-3383 0.3350 0.3318 0.3287 0.3258 0.3231 0-3204 0.3179 0-3155 0-3132 0-3110 0-3088 0.3068 0-3048 0.3029 0.3011 0-2994 0.2977 0.2961 0.2945 0.2930 0.2916 0.2902 0.2888 0-2875 0.2862 0.2850 0-2838 0.2827 0.2816 0.2805 0.2794 0-2784 859-1 884.0 909"3 935.0 961-2 987"8 1014-7 1042-1 1070.0 1098.2 1126.9 1155-9 1185.4 1215.4 1245.7 1276-5 1307.7 1339.3 1371.3 1403.8 1436.7 1470.1 1503.8 1538:0 1572.7 1607.8 1643.3 1679.2 1715.6 1752.4 1789.7 1827.4 1865.5 1904.1 1943.2 19.436 20.416 21.420 22"449 23.501 24.578 25.680 26.805 27.955 29-129 30"327 31.550 32.797 34.068 35-364 36.683 38-027 39-395 40-788 42.205 43.645 45.111 46.600 48.114 49.651 51.214 52.800 54.410 56.045 57.704 59.387 61.094 62.826 64-581 66.361 6.674 6.813 6.949 7.082 7.213 7"340 7.465 7.588 7.707 7.825 7"939 8.052 8.162 8.269 8.375 8.478 8.579 8.677 8.774 8.869 8.962 9.052 9.141 9.228 9.313 9.397 9.479 9-559 9.637 9"714 9-789 9.863 9.935 10.005 10.075 0"1498 0.1468 0"1439 0.1412 0"1386 0.1362 0-1340 0-1318 0.1297 0.1278 0.1260 0.1242 0.1225 0.1209 0.1194 0.1180 0.1166 0.1152 0.1140 0.1128 0"1116 0.1105 0.1094 0.1084 0.1074 0.1064 0.1055 0.1046 0.1038 0.1029 0.1022 0.1014 0.1007 0.0999 0.0993 2"1279 2.1581 2"1872 2.2154 2.2427 2.2690 2"2946 2.3194 2.3434 2.3666 2.3892 2.4110 2.4323 2.4529 2.4729 2.4923 2.5112 2.5295 2.5473 2.5646 2.5815 2-5978 2.6138 2.6293 2.6444 2-6591 2.6734 2-6873 2-7009 2.7141 2-7270 2-7395 2-7518 2-7637 2.7753 Equilibrium Values.for Normal Shocks in Nitrous Oxide for T1 = 295 °K. a = 15x 10 -6 (°K)-i b = -6"493 x 10 -a M1 ml m2 T2 P2/Pl 1.1 1.2 1"3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2-7 2"8 2-9 3.0 3.1 3.2 3-3 3.4 3-5 3.6 3.7 3.8 3"9 4.0 1.050 1.146 1.241 1"336 1.432 1.527 1"623 1.718 1.814 1.909 2.005 2-100 2.196 2-291 2.387 2.482 2.577 2.673 2.768 2.864 2.959 3.055 3.150 3.246 3-341 3.437 3.532 3.628 3.723 3.819 0"8680 0.7984 0.7416 0.6943 0.6543 0"6201 0"5905 0-5646 0.5419 0"5218 0.5039 0.4878 0.4733 0.4602 0.4482 0.4373 0.4273 0-4181 0-4096 0.4018 0.3945 0-3877 0-3814 0.3755 0.3700 0.3648 0-3599 0.3553 0.3509 0.3468 308-9 322-1 335.0 347.8 360.7 373"9 387.4 401.3 415.6 430.3 445.4 461.0 477.0 493.5 510-4 527.8 545.7 564.0 582-7 601-9 621.6 641.6 662.1 683"0 704.4 726.2 748.4 771"0 794.0 817"4 1.238 1-499 1.783 2.090 2.420 2.773 3.150 3.549 3.972 4.419 4.889 5.382 5.899 6.440 7.004 7.592 8.204 8.839 9.498 10.181 10.888 11.619 12.374 13.152 13:955 14.781 15.632 16.506 17.404 18.327 P2/Pl 1.182 1"373 1.570 1.773 1.979 2.188 2.398 2.609 2.820 3.030 3.238 3.444 3.648 3.849 4.048 4.243 4.435 4.623 4.808 4.990 5.168 5.342 5.513 5.680 5.844 6-005 6.162 6.316 6.466 6-614 Pl/P2 M~ 0.8458 0-7282 0.6367 0.5640 0.5053 0.4571 0.4170 0.3833 0.3546 0.3301 0.3088 0.2903 0.2741 0.2598 0.2470 0-2357 0.2255 0.2163 0.2080 0-2004 0-1935 0.1872 0-1814 0.1760 0.1711 0.1665 0.1623 0.1583 0.1546 0.1512 0.1661 0"3134 0.4458 0"5664 0.6773 0.7799 0.8755 0.9648 1.0487 1.1277 1-2022 1-2728 1.3396 1.4032 1.4636 1.5211 1.5761 1.6285 1.6787 1-7267 1.7727 1.8169 1.8593 1-9000 1.9392 1.9769 2"0132 2"0482 2.0820 2"1145 Equilibrium Valuesfor Normal Shocks in Nitrous Oxide for T1 = 295 °K. a = 15x 10 -6 ( ° K ) - I b = -6-493 x 10 -3 M1 ml m2 T2 P2/Pl P2/Pi PI/P2 M~ 4.1 4.2 4.3 4.4 4.5 4"6 4.7 4.8 4.9 5.0 5"1 5.2 5"3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6"8 6.9 7.0 7.1 7.2 7.3 7"4 7.5 3.914 4.009 4.105 4.200 4.296 4.391 4.487 4"582 4.678 4.773 4.869 4.964 5.060 5.155 5.250 5-346 5.441 5"537 5.632 5.728 5.823 5.919 6-014 6.110 6.205 6-301 6.396 6.491 6.587 6-682 6.778 6.873 6"969 7"064 7-160 0.3429 0.3393 0.3358 0.3324 0.3293 0.3263 0.3234 0.3207 0-3180 0.3155 0.3131 0"3108 0.3086 0.3065 0.3045 0.3026 0.3007 0.2989 0.2972 0.2955 0.2939 0.2923 0-2909 0.2894 0.2880 0.2867 0.2854 0.2841 0.2829 0.28~17 0.2806 0.2795 0.2784 0.2774 0.2764 841-3 865.6 890.3 915-4 940.9 966-8 993.1 1019.9 1047.1 1074.6 1102.6 1131.0 1159.8 1189.0 1218.7 1248.7 1279.2 1310.1 1341.4 1373.1 1405.2 1437.8 1470.7 1504.1 1537.9 1572.2 1606.8 1641.9 1677.4 1713.4 1749.7 1786.5 1823.7 1861.4 1899.4 19.273 20.244 21.238 22.256 23.299 24.365 25-456 26.570 27"709 28.871 30.058 31.269 32.503 33.762 35.045 36"351 37.682 39"036 40.415 41.818 43.245 44.695 46.170 47.668 49.191 50.738 52.308 53.903 55.522 57.164 58-831 60.521 62.236 63.974 65.736 6.758 6.899 7-037 7.173 7.305 7.435 7.561 7.685 7-807 7.926 8.042 8.156 8.267 8.376 8.483 8-588 8.690 8-790 8.888 8.984 9-078 9.171 9-261 9.349 9.436 9.520 9.603 9.685 9-764 9.842 9"919 9.994 10.067 10.139 10.210 0"1480 0.1449 0.1421 0.1394 0-1369 0.1345 0-1323 0.1301 0.1281 0.1262 0.1243 0-1226 0.1210 0.1194 0.1179 0.1164 0.1151 0-1138 0.1125 0.1113 0.1102 0"1090 0.1080 0.1070 0.1060 0.1050 0.1041 0.1033 0.1024 0.1016 0.1008 0.1001 0"0993 0"0986 0.0979 2.1460 2.1764 2.2057 2.2341 2.2616 2.2882 2.3139 2"3388 2.3630 2.3864 2.4091 2.4311 2.4525 2.4733 2.4934 2.5130 2.5320 2-5504 2.5684 2.5859 2.6028 2.6194 2.6354 2.6511 2.6663 2.6812 2.6956 2.7097 2-7234 2-7368 2.7498 2.7626 2.7750 2-7871 2.7989 Flow Diagramfor Calculation of Equilibrium Values. IREAD GAS PROPERTIESI + l~ °,I Ic,~cu,A~ co,o,,,o,, ~.,o,.,,o oo. ~o, °= oo I + ,IDECREASE m BY O'OI I, " t CALCULATE T, To~AND HENCE 71 AND ~ CORRESPONDING' TO m t ITEST SIGNOF(n- + VEI I, IF NEGAT, fi)l ) ,F POSITtVEI INTERPOLATE TO GIVE A FIRST VALUE OF m2 INTERPOLATE USING VALUES OF ~ AND ~ CORRESPONDING TO m2 AND THE PREVIOUS VALUEOF m TO GIVE A BETTER ESTIMATE FOR m2 IF SUCCESSIVE VALUES OF m2 DIFFER BY LESS THAN 0"0001 + IF SUCCESSIVE VALUES OF m2 DIFFER BY MORE THAN" 0"0001 CALCULATE EQUILIBRIUM PROPERTIES BY SUBSTITUTION OF m2 INTO THE RAYLEIGH - LINE RELATIONS Printed in Wales for Her Majesty's Stationery Office by Allens Printers (Wales) Limited. Dd.129527 K5. • R. & M. No. 3472 @) Crown copyright 1968 Published by HER MAJESTY'S STATIONERYOFFICE To be purchased from 49 High Holborn, London w.c.l 423 Oxford Street, London w.l 13A Ca.4tle Street, Edinburgh 2 109 St. Mar}¢ Street, CardiffCF1 IJW Brazennose Street, Manchester 2 50 Fairfax Street, Bristol 1 258 259 Broad Street, Birmingham 1 7-11 Linenhall Street, Belfast BT2 SAY or through any bookseller R° & M. No. 3472 S.O. C o d e N o . 2 3 - 3 4 7 2
© Copyright 2026 Paperzz