Modeling Jump Dependence using Lévy copulas

Modeling Jump Dependence using Lévy copulas
Andrea Krajina, Institut für Matematische Stochastik, Göttingen
Joint work with
Roger Laeven, Tilburg University and EURANDOM
EURANDOM, Eindhoven, August, 2011.
1 / 25
Outline
Introduction
– Lévy process
– Lévy copula
M-Estimator
– Definition. Asymptotic properties
– Simulation study: Clayton copula
Example: MSCI equity index data (Europe)
2 / 25
Lévy process
bivariate Lévy process: a stochastic process Y = (Y1 , Y2 ) such that
– Y0 = (0, 0);
– independent and stationary increments;
– stochastically continuous.
= eφ(z) , where
by Lévy -Khintchine representation: E
Z
1
ihz,yi
φ(z) = i hγ, zi− hz, Azi+
e
− 1 − i hz, yi 1{|y| ≤ 1} ν(dy),
2
R2 \(0,0)
eihz,Yi
any Lévy process: (γ, A, ν), with γ ∈ R2 , A ∈ R2×2 and a positive
sigma-finite measure ν on R2 \ {(0, 0)}.
3 / 25
Lévy copula
denote R := (−∞, ∞]
a function F : S → R, S ⊆ R is 2-increasing if
2
F (a1 , a2 ) + F (b1 , b2 ) − F (a1 , b2 ) − F (b1 , a2 ) ≥ 0,
for all (a1 , a2 ), (b1 , b2 ) ∈ S with a1 ≤ b1 , a2 ≤ b2
2
a function F : R → R is a Lévy copula if
– F (u1 , u2 ) 6= ∞, if (u1 , u2 ) 6= (∞, ∞),
– F (u1 , u2 ) = 0, if ui = 0, for at least one i = 1, 2,
– F is 2-increasing
– F i (u) = u, i = 1, 2, u ∈ R
4 / 25
Lévy copula
2
a function U : R2 \ {(0, 0)} → R, S ⊆ R is the tail integral of a Lévy
process with the Lévy measure ν if
U (x1 , x2 ) = sgn(x1 )sgn(x2 )ν (I(x1 ) × I(x2 )) , where
(
(x1 , ∞), if x1 ≥ 0,
I(x1 ) =
(−∞, x1 ], if x1 < 0.
Lévy copula vs. copula
5 / 25
Lévy copula
Theorem (Kallsen and Tankov)
Let F be a bivariate Lévy copula and U1 and U2 the tail integrals of its
marginal processes. Then there exists a bivariate Lévy process Y whose
components have tail integrals U1 and U1 , and such that
U I ((xi )i∈I ) = F I ((Ui (xi ))i∈I )
for any non-empty I ⊆ {1, 2}. The Lévy measure ν is uniquely
determined by U1 , U2 and F .
6 / 25
Lévy copula. Limit relation
Theorem (Kallsen and Tankov)
Let X = (X1 , X2 ) be a bivariate Lévy process with Lévy copula F and
(α ,α )
tail integrals U1 and U2 . Denote by Ct 1 2 : [0, 1]2 → [0, 1] a copula of
(−α1 X1 , −α2 X2 ), for t ∈ (0, ∞)2 and α1 , α2 ∈ {−1, 1}. Then
(sgnu1 ,sgnu2 )
F (u1 , u2 ) = lim Ct
t→0
(t|u1 |, t|u2 |)sgnu1 sgnu2 ,
for any (u1 , u2 ) ∈ Ran(U1 ) × Ran(U2 )
7 / 25
M-Estimator: Basic Assumptions
bivariate Lévy process Y observed at n distinct times separated by ∆n :
Y∆n , Y2∆n , . . . , Yn∆n
n increments: Y∆n , Y2∆n − Y∆n , . . . , Yn∆n − Y(n−1)∆n
sample X1 , . . . , Xn , where Xi = Yi∆n − Y(i−1)∆n , with distribution
function H and marginals H1 and H2
assume that its Lévy copula F belongs to a parametric family
F ∈ {Fθ : θ ∈ Θ ⊆ Rp },
8 / 25
M-Estimator: Nonparametric Estimator
nonparametric estimator of F (Laeven)
1
F̂ (u1 , u2 ) := sgn(u1 )sgn(u2 )
k
n
X
i=1
1
((
Ri1
Ri1
)
> n + 1 − ku1 , if u1 ≥ 0
,
≤ k|u1 |,
if u1 < 0
)
(
2
Ri > n + 1 − ku2 , if u2 ≥ 0
if u2 < 0
Ri2 ≤ k|u2 |,
j
– Ri is the rank of Xij among X1j , . . . , Xnj , j = 1, 2
– k ∈ {1, 2, . . . , n}
k = kn → ∞ and k/n → 0 when n → ∞
∆n → 0 and n∆n → ∞ when n → ∞
9 / 25
M-Estimator: Definition
let T > 0; denote ST := [−T, T ]2 ∩ Ran(U1 ) × Ran(U2 )
let g ≡ (g1 , . . . , gq )T : T → Rq , q ≥ p, be an integrable function such
that ϕ : Θ → Rq defined by
Z
g(u)F (u; θ) du
ϕ(θ) :=
T
is a homeomorphism between Θ and its image ϕ(Θ)
M-estimator θ̂n of θ0 is defined as the minimizer of the criterion
function
Qk,n (θ) =
q Z
X
m=1
T
2
gm (x) F̂n (x) − F (x; θ) dx
10 / 25
M-Estimator: Asymptotic Properties
existence, uniqueness and consistency
asymptotic normality
conditions:
– there exists α ≥ 1 such that k/n − ∆n = o (k/n)α ;
– F has continuous first derivatives F 1 and F 2 ,
– there exist α > 0 and c > 0 such that, as t → 0,
(sgn(u1 ),sgn(u2 ))
t−1 Ct
(t|u1 |, t|u2 |)sgn(u1 )sgn(u2 ) − F (u1 , u2 ) = O(tα )
uniformly on {(u1 , u2 ) ∈ Ran(U1 ) × Ran(U2 ) : u21 + u22 = c},
– for the α from (AN2), k/n − ∆n = O((k/n)1+α ) and
k = o(n2α/(1+2α) );
11 / 25
M-Estimator: Consistency
Theorem 1 (Consistency) If the following conditions are satisfied,
(C1) Θ is open,
(C2) ϕ is a homeomorphism from Θ to ϕ(Θ),
(C3) ϕ is a twice continuously differentiable,
(C4) ϕ̇(θ0 ) is of full rank;
(C5) k = kn is an intermediate sequence: k → ∞ and k/n → 0, as n → ∞,
(C6) ∆n is such that ∆n → 0 and n∆n → ∞,
(C7) there exists α ≥ 1 such that k/n − ∆n = o (k/n)α ;
then with probability tending to one the criterion function Qk,n has a unique
P
minimizer θ̂n , and θ̂n → θ0 , as n → ∞.
12 / 25
M-Estimator: Asymptotic Normality
Theorem 2 (Asymptotic normality) If in addition to the assumptions
(C1)-(C6) of Theorem 1 the following assumptions hold,
(AN1) F has continuous first derivatives F (1) and F (2) ,
(AN2) there exist α > 0 and c > 0 such that, as t → 0,
(sgn(u1 ),sgn(u2 ))
t−1 Ct
(t|u1 |, t|u2 |)sgn(u1 )sgn(u2 ) − F (u1 , u2 ) = O(tα )
uniformly on {(u1 , u2 ) ∈ Ran(U1 ) × Ran(U2 ) : u21 + u22 = c},
(AN3) for the α from (AN2), k/n − ∆n = O((k/n)1+α ) and k = o(n2α/(1+2α) );
then as n → ∞,
√
d
k(θ̂n − θ0 ) → N ((0, 0)T , M (θ0 )).
(2)
13 / 25
Simulation Study: Clayton Lévy Copula
Clayton Lévy copula is given by
−1/ζ
F (u1 , u2 ) = |u1 |−ζ + |u2 |−ζ
(η1{u1 u2 ≥ 0} − (1 − η)1{u1 u2 < 0}) ,
with parameters ζ > 0 and η ∈ [0, 1]
ζ > 0 unknown, η = 1 fixed
Lévy process: bivariate Poisson jump diffusion
dXt = µdt + σdWt + JdNt
14 / 25
Simulation Study: Clayton Lévy Copula
ν(dx) = λ1 f1 (x1 ; θ1 )dx1 + λ2 f2 (x2 ; θ2 )dx2 + λ12 f12 (x1 , x2 ; θ12 )dx1 dx2 ,
model parameters:
+
+
+
µ = (0, 0), λ+
+
λ
=
λ
+
λ
1
12
2
12 = 6, θ1 = θ2 = 1/30,
σ = (0.1, 0.1), ρ = 0.4,
three different values for the Lévy copula parameter ζ ∈ {0.3, 1, 3}
simulations: 50 samples of size n = 7500, corresponding to Tn = 30 and
∆n = 1/250 (e.g. daily returns over 30 years)
15 / 25
Simulation Study: Clayton Lévy Copula
ζ=1, with Brownian noise
0.00
0.00
0.05
0.05
0.10
0.10
0.15
0.15
0.20
0.20
0.25
ζ=0.3, with Brownian noise
0.10
0.15
0.20
0.25
0.00
0.05
0.10
0.15
0.10
0.15
ζ=3, with Brownian noise
0.05
0.05
0.00
0.00
0.00
0.05
0.10
0.15
16 / 25
Simulation Study: Clayton Lévy Copula
0.12
Clayton family with ζ=0.3, η=1; M−est. of ζ, rep=50
T=5
T=10
0.08
RMSE
0.04
0.06
T=5
T=10
0.00
0.02
0.36
0.34
0.32
0.30
^
ζ
0.38
0.10
0.40
0.42
Clayton family with ζ=0.3, η=1; M−est. of ζ, rep=50
20
40
60
k
80
100
20
40
60
80
100
k
Figure 1: Estimation of ζ = 0.3, for different values of k and T .
17 / 25
Simulation Study: Clayton Lévy Copula
Clayton family with ζ=1, η=1; M−est. of ζ, rep =50
T=5
T=10
0.20
T=5
T=10
RMSE
^
ζ
0.90
0.00
0.05
0.95
0.10
1.00
0.15
1.05
Clayton family with ζ=1, η=1; M−est. of ζ, rep =50
20
40
60
k
80
100
20
40
60
80
100
k
Figure 2: Estimation of ζ = 1, for different values of k and T .
18 / 25
Simulation Study: Clayton Lévy Copula
Clayton family with ζ=3, η=1; M−est. of ζ, rep =50
3.0
Clayton family with ζ=3, η=1; M−est. of ζ, rep =50
T=5
T=10
0.6
0.0
2.3
2.4
0.2
2.5
0.4
2.6
^
ζ
RMSE
2.7
2.8
0.8
2.9
1.0
T=5
T=10
20
40
60
k
80
100
20
40
60
80
100
k
Figure 3: Estimation of ζ = 3, for different values of k and T .
19 / 25
Simulation Study: Clayton Lévy Copula
jump dependence coefficient: F (1, 1) = 2−1/0.3 ≈ 0.099
Clayton(0.3,1); M− and nonpar. est. of F(1,1)=0.099, rep=50
0.10
T=5
T=10
non.par.
0.08
0.00
0.08
0.02
0.10
0.04
0.06
RMSE
0.14
0.12
^
F(1, 1)
0.16
0.18
0.20
Clayton(0.3,1); M− and nonpar. est. of F(1,1)=0.099, rep=50
20
40
60
k
80
100
T=5
T=10
non.par.
20
40
60
80
100
k
Figure 4: Estimation of F (1, 1) = 2−1/0.3 ≈ 0.099, for different values of k
and T .
20 / 25
Simulation Study: Clayton Lévy Copula
jump dependence coefficient: F (1, 1) = 2−1/1 = 0.5
Clayton(1,1); M− and nonpar. est. of F(1,1)=0.5, rep=50
T=5
T=10
non.par.
T=5
T=10
non.par.
0.10
RMSE
0.49
0.00
0.46
0.47
0.05
0.48
^
F(1, 1)
0.50
0.15
0.51
0.52
Clayton(1,1); M− and nonpar. est. of F(1,1)=0.5, rep=50
20
40
60
k
80
100
20
40
60
80
100
k
Figure 5: Estimation of F (1, 1) = 0.5, for different values of k and T .
21 / 25
Simulation Study: Clayton Lévy Copula
jump dependence coefficient: F (1, 1) = 2−1/3 ≈ 0.794
Clayton(3,1); M− and nonpar. est. of F(1,1)=0.794, rep=50
Clayton(3,1); M− and nonpar. est. of F(1,1)=0.794, rep=50
0.10
RMSE
0.77
T=5
T=10
non.par.
0.00
0.74
0.75
0.05
0.76
^
F(1, 1)
0.78
0.79
0.15
T=5
T=10
non.par.
20
40
60
k
80
100
20
40
60
80
100
k
Figure 6: Estimation of F (1, 1) = 2−1/3 ≈ 0.794, for different values of k and
T.
22 / 25
Example: MSCI equity data; Europe
we consider log-returns from the price index for the following pairs of
countries:
– UK-Germany, time period Jan 2, 1980 - Jun 30, 2011, n = 8127
– UK-Portugal, time period Jan 4, 1988 - June 30, 2011, n = 6129
– UK-Greece, time period Jan 4, 1988 - June 30, 2011, n = 6129
– summary statistics: mean≈ 0, std.dev 0.012 − 0.02
UK-Germany
UK-Portugal
UK-Greece
ζ̂, k = 30
0.885
0.545
0.439
F (1, 1) = 2−1/ζ̂
0.457
0.280
0.206
F̂ (1, 1)
0.5
0.33
0.23
23 / 25
Example: MSCI equity data; Europe
UK − Portugal
0.05
−0.05
0.00
Portugal
0.00
−0.05
−0.10
−0.10
−0.05
0.00
0.05
0.10
−0.10
−0.05
UK
0.00
0.05
0.10
UK
Greece
0.05
0.10
0.15
UK − Greece
0.00
−0.10
−0.05
−0.15
−0.10
Germany
0.05
0.10
0.10
UK − Germany
−0.10
−0.05
0.00
0.05
0.10
UK
24 / 25
Example: MSCI equity data; Europe
UK − Portugal
0.0
0.0
0.2
0.2
0.4
0.4
^
ζ
^
ζ
0.6
0.6
0.8
0.8
UK − Germany
40
60
80
100
20
40
k
60
80
100
k
0.0
0.1
0.2
0.3
0.4
0.5
UK − Greece
^
ζ
20
20
40
60
80
100
k
25 / 25