Calculus Lecture 28th April 2004 Notes by Omar Shouman Example 5 (Taylor series for the ln (natural logarithm) function) Let f ( x) ln( x) and x0 1 f (x ) ln(x ) f ( x) x 1 f ( x) x 2 f (3) ( x) (1)(2) x 3 f (1) 0 f (1) 1 f (1) 1 f (3) (1) (1)(2) Now, we find an expression for the nth derivative of the function: f (n ) f (1) (x ) (1)(2).....((n 1))x n (1)n 1 (n 1)!x n (1) (1)n 1 (n 1)! The formula for the Taylor series is: (x x 0 ) n (x 1)n (1)n 1 (n 1)! n! n! n 0 n 1 (1)n 1 1 1 ln x (x 1)n (x 1) (x 1)2 (x 1)3 ... n 2 3 n 1 f (x ) f Example 6 (n ) (x 0 ) (The arctangent function) f ( x) arctan x 1 1 f ( x) 2 1 x 1 ( x 2 ) Using the formula q n n 0 1 we can write 1 q f ( x) 1 ( x 2 ) ( x 2 ) 2 ( x 2 )3 ....... ( x 2 ) n n 0 This is the derivative; we can integrate to get the function: f ( x) (1)n . n0 x 2n1 C 2n 1 where C R 1 Dr.Kuenzer To evaluate the constant: f (0) arctan(0) 0 2 n1 n 0 ( 1) . C 0 2n 1 n0 The value of the series is zero. Thus, C 0. The final result we have is: x 2 n1 x3 x5 f ( x) arctan x (1) . x ........ 2n 1 3 5 n0 n In particular, 1 1 1 1 f (1) arctan(1) 1 ......... (1) n . . 3 5 7 2n 1 4 n 0 Example 7 Let R , x0 0 , f ( x) (1 x) Then, f 0 (x ) (1 x ) , f (1) 1 ( x) .(1 x) f , f (2) ( x) .( 1)(1 x) 2 0 (0) 1 f (0) f (2) (0) ( 1) (1) Now we write the expression for the nth derivative of the function: f (n ) (x ) ( 1) ( n 1)(1 x ) n f (n ) (0) ( 1) ( n 1) The Taylor series is given as: f n 0 (n ) (x x 0 ) n xn (x 0 ) ( 1) ( n 1) n! n! n 0 2 Now we introduce a new notation: The binomial coefficient is defined as follows: n ( 1) ( n 1) for R , n is an integer n 0 1 2 3 n n Examples 1 0 1 ( 1) 1.2 2 1 Therefore, we can use this notation to express the Taylor series for the function f ( x) (1 x) as f (x ) (1 x ) x n x 0 x x 2 n 0 n 0 1 2 ( 1) 2 1 x x 2 Now consider the case where m 0 (a positive integer) m m (m 1) (m m ) (m n 1) Then, 0 n! n m m! If n m , then n n !(m n )! Therefore, the Taylor series is given by a polynomial: m m (1 x )m x n n 0 n Conclusion: m n m m m b m b (a b )m a m 1 a m a m nb n a n 0 n a n 0 n 3 if n m The Binomial Theorem: m m (a b )m a m nb n n 0 n Examples 1) Expand: (a b)4 4 4 4 4 4 (a b ) 4 a 4b 0 a 3b 1 a 2b 2 a1b 3 a 0b 4 0 1 2 3 4 4! 4 4! 3 1 4! 2 2 4! 1 3 4! 4 a ab ab ab b a 4 4a 3b 1 6a 2b 2 4ab 3 b 4 . 0!4! 1!3! 2!2! 3!1! 4!0! 2) Expand 1 2 1 2 1 2 1 2 1/ 2 4 (1 x ) x x 2 x 3 x 0 1 2 3 4 1 1 1 5 4 1 x x 2 x 3 x 2 8 16 128 1 2 1 2 Note that in 2) we do not use the factorial to evaluate , because m ,here, is NOT an n integer. Recall the definition: ( 1)....( n 1) n! n The Taylor series is very useful, but we should know when it is valid. To know this, we have to calculate the radius of convergence. Problem: when are these formulas valid? (e.g. e x n 0 xn (according to the Taylor series): What is the radius of convergence? ) n! Lemma (Weak Stirling) Let n 1 Then, n ne 1n n ! (n 1)n 1e n 4 Proof: n ln(n !) ln k k 1 In general, n n n1 k 1 1 k 1 ln k ln xdx ln k n We know that: ln xdx x ln x x 1 n ln n n 1 n 1 n n 1 k 1 k 1 Hence, n ln n n 1 ln k , and n ln n n 1 ln k If we replace n by n 1 in the second inequality, we get: n (n 1) ln(n 1) n 1 1 ln k k 1 Now, from the first and the third inequalities, we can conclude that: n ln n 1 ln(n!) (n 1) ln(n 1) n Applying the exponential function, we get: en ln( n )n1 n ! e( n1) ln( n1)n , that is n ne 1n n ! (n 1)e n , as was to be shown. Let us calculate the radius of convergence of 1 xn . We have an . n! n 0 n ! So, 1 an 1 n 1 1 1 n 1 n 1 1 n 1n e n 0 n n ! n .e 1 Hence, R (lim an n )1 01 n The exponential function converges everywhere. More precisely: The complex exponential function def zn n 0 n ! ez converges for all z 5 Similarly, z 2n 1 sin z (1) (2n 1)! n 0 for z n cos z (1)n n 0 z 2n (2n )! for z Now, (iz )0 (iz )1 (iz ) 2 (iz )3 (iz ) 4 (iz )5 0! 1! 2! 3! 4! 5! (iz )0 (iz ) 2 (iz ) 4 0! 2! 4! (iz )1 (iz )3 (iz )5 1! 3! 5! z0 z2 z4 0! 2! 4! z1 z3 z5 i i i 1! 3! 5! cos z i sin z e iz Hence, we have Euler’s Formula e iz cos z i sin z for any z In particular, e x iy e x e iy e x (cos y i sin y ) Thus, e xiy e x cos y i sin y e x ( (cos y) 2 (sin y) 2 ) e x . Note: sin(z ) (1) n n 0 (z ) 2 n 1 z 2 n 1 (1) n sin z (odd function) 2n 1! n 0 2n 1! 2n ( z ) 2 n n z cos(z ) (1) (1) cos z (even function) (2n )! n 0 (2n )! n 0 n Now we derive an expression for the cosine function: e iz e iz (cos z i sin z ) (cos z i sin z ) 2cos z 1 Thus, cos z (e iz e iz ) 2 Similarly, we derive an expression for the sine function: 6 e iz e iz (cos z i sin z ) (cos z i sin z ) 2i sin z 1 sin z (e iz e iz ) 2i Example (Integrating using e ix and e ix ) e x (cos x ) 4 dx we use the substitution for the cosine function in terms of the e function 4 1 x 1 ix ix x 4ix 2ix 2ix 4ix e 2 (e e ) dx 16 e (e 4e 6 4e e )dx (Binomial Theorem) 1 (e (1 4i ) x 4e (1 2i ) x 6e x 4e (12i ) x e (14i ) x )dx 16 1 1 1 1 e (1 4i ) x 4 e (1 2i ) x 6e x 4 e (12i ) x 16 1 4i 1 2i 1 2i 1 2i (12i ) x x e 6e 4 5 1 e (14i ) x 1 4i const . 1 4i (14i ) x e 17 const . 1 1 4i (1 4i ) x 1 2i (1 2i ) x e 4 .e 16 17 5 1 x 1 1 1 e cos(4x ) e x sin(4x ) e x cos(2x ) e x sin(2x ) 6e x const 136 34 10 5 7
© Copyright 2026 Paperzz