Testing for structural change in binary choice models with autocorrelation Laurent L. Pauwels The University of Sydney Felix Chan Curtin University Johnathan Wongsosaputro The University of Sydney Preliminary draft: February 2012 Abstract While there is vast literature concerning structural change tests for linear time series models, the literature for such tests in the context of binary choice models is somewhat sparse. More importantly, empirical studies in macroeconomics have applied standard tests for structural changes in probit models even though these tests were developed for linear regression models. As such, the validity and performance of these tests for binary choice models are unknown. This paper carries out a simulation analysis of the size and power of the Andrews (1993) ‘supremum’ LM, LR and Wald tests in the context of binary choice model with varying levels of autocorrelation. It is found that the tests exhibit greater size distortion, have lower power, and are slightly less precise in identifying the breakpoint than in the linear model. Bootstrapping is also considered as an alternative approach to obtaining critical values, and though it reduces the size distortion in finite samples, it is unable to accommodate the distortion associated with high autocorrelation. Key words: Binary choice models, Probit models, Structural change, Autocorrelation, Simulations 1 1 Introduction A structural change refers to a shift in the parameters of a model of interest. When the conditional relationship between the dependent and explanatory variables changes, estimates of model coefficients are inaccurate across different regimes. Typically, structural change tests are used to detect whether such change has occurred in linear models. Important structural change tests for empirical work are the ‘supremum’ test by Andrews (1993) and the associated ‘average’ and ‘exponential’ test of Andrews and Ploberger (1994), which generalises the work of Chow (1960) and Quandt (1960).1 Although Andrews (1993) derives their limiting distribution, the quantiles of the exact limiting distributions for such tests generally do not have a closed form, and have to be approximated. The important question is: what provides the best possible approximation to the finite sample distribution of such tests? Andrews (1993) and Andrews (2003) approximate the finite-sample distribution through simulations, Hansen (1997) provides parametric approximations, and more recently, Estrella (2003) uses a method based on the Newton-Raphson algorithm to calculate exact p-values for tests. These different methods to approximate finite sample distribution of tests often suffer from random error or simulation bias, which could affect the size and power of the tests. In the light of asymptotic approximation’s shortcomings, Diebold and Chen (1996) evaluate the sizes of the structural change tests in linear models with autocorrelation, comparing both asymptotic approximation and bootstrapped critical values. Other work studying the properties of the Andrews (1993) and related tests in linear models include Yang (2001) and Hansen (2000). Although, the examination of finite sample properties of structural change tests have mostly been restricted to linear models, several empirical studies have used such tests in binary choice model. These include Estrella et al. (2003) as well as Kauppi (2010), both of which test the stability of the predictive relationship between U.S ressesions and its determinant such as the yield-curve with Andrews (1993). The presence of structural changes can lead to substantial changes in the estimated probabilities of the U.S. recession occurring. Furthermore, business cycles tend to exhibit high levels of persistence as discussed by Kauppi and Saikkonen (2008), and hence lead Chauvet and Potter (2005) to question the performance of the Andrews (1993) test in the presence of autocorrelated errors. This paper studies the properties of structural change tests with an un1 Extensions of these tests also include Bai and Perron (1998) and Bai (1999) to multiple unknown breakpoints in linear models 2 known breakpoint in binary choice models relevant to studying business cycles among other issues, comparing the asymptotic approximation by Andrews (1993) and parametric bootstrapping of the finite sample distribution. To the authors’ knowledge, no study has been carried out to evaluate such properties in the context of non-linear models. One notable exception is Hoyo et al. (2005), which examines the performance of the Andrews (1993) ‘supremum’ test in non-linear and dynamic models. The paper considers the size and power of the three Andrews (1993) ‘supremum’ tests when applied to probit models with different levels of autocorrelation and varying sample sizes using a simulation-based approach similar to the work by Diebold and Chen (1996) in the linear model. In addition to the size of the tests, power is also considered under several different alternative specifications, as well as three different levels of data trimming. One method to accommodate for autocorrelation is investigated, namely the use of a robust variance-covariance estimator (HAC). This paper focuses mainly on the binary probit model as it appears to be more commonly used in empirical studies that involve testing for structural changes. Estrella et al. (2003) investigate the predictive power of the yield curve in predicting recessions and inflationary pressure, the latter two having a binary structure. They test for a structural change in the conditional relationship using the Andrews (1993) ‘supremum’ test. Chauvet and Potter (2005) consider a similar problem in a binary probit model, but use Bayesian techniques to test for a structural change instead. The binary logit model is also explored. However, since the logit’s results and conclusions are comparable to the probit case, they are not included in this paper and are available in a “supplement” paper. This paper’s main findings can be summarised as follows. The simulations show that the three tests are undersized in small sample and converge to the nominal size in large sample (T > 100), but slower than in the linear case. The size distortion also worsens as autocorrelation increases for all three tests. Bootstrapping helps the tests to exhibit empirical size closer to the nominal size. The relationship between the ‘supremum’ W ≥ LR ≥ LM observed in linear models by Diebold and Chen (1996) does not seem to hold in the binary probit model. There does not seem to be a clear ordering of magnitude of the three tests in the probit case but it appears that the ‘supremum’ LR ≥ LM and that the Wald test is mostly smaller than the two other. The tests’ power increase with the sample size but is much lower than in the linear model. The power of the tests are less affected by autocorrelation than the size. The rest of the paper is organised as follows. Section 2 sets out the motivations, the models and tests considered. Section 3 outlines the simula3 tion specifications for the size of the structural change ‘supremum’ test and presents the results. Section 4 presents and discusses simulation results for the power of the test. Section 5 concludes and suggests possible avenues of further study. 2 2.1 Structural change in the probit model Time series binary choice models There are many instances when binary choice models are used to analyse and forecast recurrent events over time in Macroeconomics and Finance. Binary random variables are well suited to describe the recurrent pattern occurring in a dependent variable of interest. Some example include: Business cycles, bull and bear stock markets (financial cycles), financial crises, “Hot” and “Cold” IPO markets, and booms and slumps of commodity or the real restate markets. See for example, Pagan and Harding (2011) and Harding and Pagan (2011) for a discussion. One of the most common application of such time series binary choice model is forecasting U.S. recessions. Chauvet and Potter (2010) setup a model for U.S. business cycles to forecast the probability of recessions as such: yt∗ = x0t β + εt εt |xt ∼ i.i.d N(0, 1) (1) with ( 1 if yt∗ < 0 yt = 0 if yt∗ ≥ 0 (2) where yt∗ represents the state of the economy, as measured by the NBER Business Cycle Dating Committee. yt takes the value 0 if the observation is an expansion and 1 if it is a recession. xt typically contains coincident indicators including: production, sales, income and employment. Alternatively, the interest rate spread or the yield-curve can also be employed as a predictor of U.S. recessions (see Chauvet and Potter, 2005, or Kauppi and Saikkonen, 2008, for example). It is common practice in empirical work using probit models to assume parameter stability and independent errors. However, business cycles often exhibit high levels of persistence as shown among others by Kauppi and Saikkonen (2008). Chauvet and Potter (2005) states that the effect of not 4 modelling autocorrelated errors is potentially large on recession probabilities. As such εt in (1) can be further specified as εt = ρεt−1 + νt , νt ∼ N(0, 1), (3) in the case of first order autocorrelation, where |ρ| < 1. Hence, Chauvet and Potter (2010) deals with the possibility of autocorrelated errors by allowing the latent variable, yt∗ , to follow a first order autoregressive process ∗ + εt yt∗ = x0t β + θyt−1 (4) where |θ| < 1. Over the last few decades, forecasts of recessions using these coincident variables may have been compromised by structural changes in the U.S. economy. A change in the stability of U.S business cycle fluctuations can affect the frequency, duration and probability of future recessions and expansions. Koop and Potter (2000) and McConnell and Perez-Quiros (2000) among others find a substantial decline in the amplitude of the US business cycle since the mid-1980s. Furthermore, Chauvet and Potter (2010) estimates several specifications of the probit model with Bayesian methods and presents evidence in favour of recurrent structural changes in the U.S. business cycles. Similar questions have been raised about the stability of the predictive relationship between U.S business cycles and the yield-curve. For example, Estrella et al. (2003) and Kauppi (2010) test the stability of the predictive power of the yield curve in similar probit models, using the seminal work by Andrews (1993). The Andrews (1993) test present the advantage of being versatile by allowing for an endogenous breakpoint and being valid under mild regularity conditions in a wide variety of parametric models. 2.2 Testing for structural change In model (1), the null hypothesis of no structural change is H0 : β = β0 for all t ≥ 1 for some β0 ∈ B ⊂ Rp . whilst the alternative of a single structural change at an unknown date is ( β1 (π) for t = 1, ..., T π H1 (π) : β = β2 (π) for t = T π + 1, ..., T where π ∈ (0, 1) denotes the proportion of observations before the change point in the unrestricted model. The location of the breakpoint is then T π. 5 Under the alternative hypothesis, the unrestricted model is defined as ( x0t β1 + εt for t = 1, ..., T π yt∗ = x0t β2 + εt for t = T π + 1, ..., T (5) with ( 1 if yt∗ < 0 yt = 0 if yt∗ ≥ 0 as before. The Andrews (1993) tests rely on a very general set of assumptions that remain valid for a broad class of estimators including maximum likelihood, generalised method of moments and several robust forms of least squares. The probit model in (1) is estimated using maximum likelihood, as is common practice in literature. The log-likelihood function to be maximised in the binary probit model (1) for the full sample can be written as `(β) = T X ln [1 − Φ(x0t β)] 1(yt = 0) + ln Φ(x0t β) 1(yt = 1). (6) t=1 with 1(·) as an indicator function and where the probability of observing 1 or 0 is defined as Pr(yt = 1|xt ) = Φ(x0t β) and Pr(yt = 0|xt ) = 1 − Pr(yt = 1|xt ), where φ and Φ are the standard Gaussian density and distribution functions respectively. The log-likelihood before and after the structural change is defined as πT T X X `1 (·) = `t (·) and `2 (·) = `t (·) t=1 t=πT +1 The log-likelihood of the unrestricted model is `(·) = `1 (·) + `2 (·). These log-likelihoods can be evaluated at the maximum likelihood estimates for the pre-break and post-break sample (β̂1 and β̂2 ), as well as for restricted model or the full sample (β̂). Andrews (1993) proposes three ‘supremum’ tests for identifying a single structural change at an unknown location. The test statistics are the supremum of the Wald (WT ), Likelihood Ratio (LRT ) and Lagrange Multiplier (LMT ) statistics defined as sup WT (π), sup LMT (π) and sup LRT (π) π∈Π π∈Π π∈Π 6 where Π is the untrimmed region defined a priori, with Π bound away from 0 and 1 to ensure that the limiting distribution of the test statistics will converge in distribution. Although Andrews (1993) arbitrarily recommends trimming the data by 15% on both ends, such that Π = [0.15, 0.85], it has also been suggested in Bai and Perron (2004) that using a higher trimming could lead to power gains. The three statistics are computed for every observation within the pre-defined region, Π, before obtaining its supremum, and are defined as follows 0 h i−1 b WT (π) = β̂1 (π) − β̂2 (π) Σ β̂ (π) − β̂ (π) , (7) 1 2 β̂1 (π),β̂2 (π) !0 ! i−1 ∂` (β̂(π)) ∂`1 (β̂(π)) h b 1 1 Σβ̂(π) , (8) LMT (π) = π(1 − π) ∂ β̂ ∂ β̂ h i LRT (π) = 2 `1 (β̂1 (π)) + `2 (β̂2 (π)) − `(β̂(π)) , (9) where β̂1 (π) and β̂2 (π) are likelihood estimates before and af the maximum ∂`1 (β̂(π)) ter the breakpoint, and is the first derivative of the log-likelihood ∂ β̂ prior to the breakpoint evaluated at the maximum likelihood estimate for the restricted model. Practically, the choice of which test to use usually depends on ease of computation, since all three test statistics are asymptotically equivalent. The sup LM test tends to be the most efficient in many cases since it only requires the restricted model to be estimated. Both Estrella et al. (2003) and Kauppi (2010) use the sup LM test for this reason. b In the simple case when there is no serial correlation Σ β̂1 (π),β̂2 (π) is defined as the inverse of the sum of the Hessian matrices evaluated at the preand post-breakpoint, respectively. As noted in Andrews (1993) (p.835), the √ asymptotic variance-covariance of T β̂1 (π) − β̂2 (π) does not contain a covariance term since the proportion of observations adjacent to the breakb point approaches zero as T → ∞. On the other hand, Σ β̂(π) is the inverse of the Hessian matrix evaluated at the maximum likelihood estimate of the restricted model When there is serial correlation, due to the high level of persistence in business cycles as discussed in section 2.1 for example, the varianceb b covariance matrices (Σ β̂1 (π),β̂2 (π) or Σβ̂(π) ) have to be modified accordingly. This can be achieved by including an appropriate kernel estimator. For example, Estrella and Rodrigues (1998) derives a consistent estimator of the variance-covariance matrix for probit models, while Estrella et al. (2003) uses the Newey and West (1987) estimator, and Kauppi (2010) uses a Parzen kernel. A discussion pertaining to the choice of kernel and its bandwidth 7 parameter can also be found in Andrews (1991). Alternatively, it is also possible to model the persistence directly in the model of interest as shown in equation (4) in the case of business cycle application for example. 2.3 Large and finite sample properties of the tests The limiting distribution of the Andrews (1993) ‘supremum’ tests requires a mild set of assumptions, and this result is directly applicable to binary choice models such as the probit model. Assumption 1 specifies standard conditions such as smoothness, full rank, weak asymptotic dependence, asymptotic covariance stationarity, and consistency of estimates. Andrews’s assumption 3 requires the variance-covariance matrix to be estimated consistently, which holds in probit models as shown by Estrella and Rodrigues (1998). Under these assumptions, theorem 3 of Andrews (1993) states that the three test statistics converge in distribution to the square of a tied-down Bessel process. Andrews (1993) publishes the critical values of the tests, which are updated in a corrigendum in Andrews (2003). The finite sample properties of the three tests in non-linear models, however, are lacking in literature. While it is well-known that LM ≤ LR ≤ W in linear generalised least squares models (see Engle, 1984 and Breusch, 1979), such a relationship is not always observed in non-linear models. Furthemore, the rates of convergence of the three tests are also likely to be different for non-linear models. As a result, the choice of test to be used should not be decided purely based on computational convenience without first ascertaining their relative performances in finite samples. The finite sample properties of the Andrews (1993) tests have bee studied extensively in the literature for the linear model. Diebold and Chen (1996) provides one of the early contribution comparing the performance of asymptotic and bootstrapped based approximations to the finite sample distributions of the Andrews (1993) tests for structural change. The simulation results are presented for linear models with autocorrelated errors. They affirm the conjecture stated in Quandt (1958) that the usual χ2 critical values ordinarily used for the Chow (1960) test are inappropriate for ‘supremum’ tests. They further observe that the size distortion of the Andrews (1993) test statistics under small sample sizes and high degrees of autocorrelation in linear models can be accommodated through bootstrapping, but the case for probit models has not been investigated thus far, and is one of the aims of this paper. 8 3 Simulation analysis of test size 3.1 Design Equations (1) - (3) form the model used in the simulation analysis.2 There is one explanatory variable generated as xt ∼ N(0, 4) and the model also contains a constant. The coefficient on that variable is set to β = 1. The simulations are conducted with autoregressive terms ρ = [0, 0.9] in increments of 0.1, and further include ρ = 0.95 and 0.99 to investigate the performances of the tests in extreme cases.3 The sample sizes are T = [50, 500] in increments of 50, as well as T = 10 and 30. The most commonly-used nominal test sizes α = 1%, 5%, 10% are analysed as well as trimming regions Π = [0.15, 0.85], [0.10, 0.90], [0.05, 0.95]. In an approach that mirrors Diebold and Chen (1996), the model is estimated without accounting for the autocorrelation in the error process in order to assess its impact on the properties of the tests. Although the Andrews (1993) tests are able to accommodate heteroscedasticity-and-autocorrelationconsistent (HAC) estimation methods, Diebold and Chen (1996) show that the sizes of the tests exhibit considerable robustness to distortion even when autocorrelation is not accounted for. This robustness is a result of the better adequacy of bootstrap approximation to finite sample distributions compared to asymptotic approximation. This Monte Carlo study also compares both types of approximation. Bootstrapping based on resampling the residuals, as done by Diebold and Chen (1996) for linear models, is not possible for probit models. However, since the distribution of the probit errors are assumed to be N(0, 1), it is possible to do parametric bootstrapping where a new set of errors are redrawn from the same distribution as the data generating process. The new set of errors are then used to regenerate a new set of dependent variables based on the model under the null, using the estimated parameters and the explanatory variables obtained from the data.4 Alternatively, Albanese and Knott (1994) proposes an empirical bootstrap procedure for the logit and probit models that involves resampling the dependent and explanatory variables instead of the residuals. Although, this approach is interesting as it can be extended to block-bootstrapping, it may not be the most appropriate 2 Simulations with the logit specification were also conducted and delivered comparable results to the probit specification. Hence, only the probit model is discussed. The logit results are available in a “supplement” paper. 3 The standardised case when νt ∼ N(0, 1 − ρ2 ) instead of νt ∼ N(0, 1) has also been investigated, and the results were comparable in either case. The results are available from a “Supplement” paper from the same authors. 4 See Appendix A for details. 9 avenue when considering small samples and high level of persistence. Hence, this approach is left as a further avenue for research. The simulation is implemented with the following steps: Step 1. Generate xt and εt as described earlier and generate yt as specified in equations (1) and (2) for t = 1, . . . , T . Step 2. Estimate the model with maximum likelihood to obtain β̂ and compute supπ∈Π W , supπ∈Π LR, and supπ∈Π LM , as in section 2.2. Step 3. Repeat steps 1 to 2, N = 1000 times. Step 4. Compute the percentage of rejections of supπ∈Π W , supπ∈Π LR, and supπ∈Π LM when compared to both the asymptotic critical values in Andrews (2003) and the bootstrapped critical values. The resulting percentage is the empirical test size or α̂. The results are summarised using response surfaces similarly to Diebold and Chen (1996).5 The response surfaces plots the size distortion (α̂ − α) as a function of the sample size (T ) and persistence parameter (ρ) when the nominal test size is fixed at 10%. Diebold and Chen (1996) regresses the size distortions of the tests on third-order expansions of the simulation parameters, T −1 , ρ, and α, including their powers and cross-products, selecting statistically significant variables to draw the response surface. Surface regressions reduce computational burden by allowing less simulations to be carried out, and have also been used in MacKinnon (1996) and Bai and Perron (2003) among others. Initially, the experiments followed the surface regression approach, but it was found that they often yielded large residuals. Hence, unlike Diebold and Chen (1996), the simulations are carried out for every point on the surface plot instead of using surface regressions. In turn, this leads to more accurate surface plots. The simulations are carried out using MATLAB R2009b, with simulation time approximately equal to 1.2 minutes per observation, such that a simulation of sample size T = 100 requires around two hours of computing time. 3.2 Results This paper follows the notation used in Diebold and Chen (1996) when referring to each test. AsySupLM , AsySupLR, and AsySupW refer to the tests that make use of Andrews (2003) asymptotic critical values, while 5 Tables with all of the test size results are also provided in the appendix. 10 BootSupLM , BootSupLR, and BootSupW refer to the tests that use bootstrap critical values. All the simulations were conducted also for a linear model with an AR(1) error term, mirroring the binary choice approach. The results are not reported here as they were all consistent with the findings of Diebold and Chen (1996). The response surfaces for the size distortion of the three tests are presented for the 15% trimming level and at the 10% level of statistical significance in Figure 1. The corresponding tables for the size of the three tests at the 10% statistical significance level and for different trimming levels are available in the Appendix. The main observations are: 1. The sizes of AsySupW , AsySupLR, and AsySupLM convergence towards the nominal size as the sample size increases, but the convergence appears to be slower than observed in the linear model. 2. The relationship SupW ≥ SupLR ≥ SupLM as observed in linear models (see Diebold and Chen, 1996, p.231) does not hold in the binary probit model. There does not seem to be a clear ordering of magnitude of the three tests. However, it seems that mostly AsySupLR ≥ AsySupLM and that the AsySupW is mostly smaller than the two other. In small samples, all three tests are undersized. 3. When ρ < 0.5, BootSup tests usually exhibits empirical size closer to the nominal size than their AsySup counterparts for small samples. Hence, the bootstrap distribution is a better approximation to the finite-sample distribution of the test statistics as compared to the asymptotic approximation. 4. High autocorrelation where ρ > 0.7 leads to extremely large size distortions that worsen as the sample size increases. 5. Bootstrapping does not appear to reduce the size distortion in larger samples when ρ > 0.4. 6. Unlike in the linear model, BootSupW , BootSupLR, and BootSupLM have sizes that are similar but not identical. In particular, BootSupW has the lowest size distortion in small samples. 7. As seen from Table 6, the BootSupLM critical value is ∞ for 5% trimming when T = 10 because no observations are trimmed in this case. As shown in Andrews (1993), this causes the limiting distribution to diverge. 11 Figure 1: Size distortion response surfaces for the probit model (a) AsySupLM (b) BootSupLM (c) AsySupLR (d) BootSupLR (e) AsySupW (f) BootSupW 12 The particularly poor finite-sample performance of AsySupW could be due to the way that the test is defined. As is pointed out in Section 2.2, the variance of β̂1 − β̂2 is computed additively without regard to the covariance term. While Andrews (1993) correctly points out that the covariance term approaches zero asymptotically, this could still have a substantial impact on the test statistic for smaller sample sizes. The changing order of magnitudes for AsySup tests, AsySupLR and AsySupLM most likely occurs because of the non-linear nature of the probit model. In contrast, Diebold and Chen (1996) shows that the Andrews (1993) tests have the following relationships in linear models: W W , LM = , LR = T log 1 + T 1+ W T which does not hold in non-linear models. One potential explanation that the ordering between AsySupLR and AsySupLM seem to be preserved is that they are both constructed using likelihood functions whereas the AsySupW relies on the ML estimators. This in turn implies that the three BootSup statistics will also not be identical, as observed in point 6. The size distortion observed under high levels of autocorrelation occurs due to a violation of the assumptions of the tests. The Andrews (1993) tests assume weak asymptotic dependence. When the level of autocorrelation is fairly low, the assumption holds and the tests exhibit low size distortion when T is sufficiently large. The assumption is violated when ρ increases further, and the tests does not converge to its limiting distribution, leading to size distortion. The autocorrelation builds up in the residuals as T increases, and this manifests itself in the probit model as persistent strings of zeroes or ones in the dependent variable, which the test incorrectly attributes to the presence of a structural change. In contrast, when T is small, there is less impact on size since the autocorrelation is not able to build up as much. This explains the increasing size distortion in larger samples under high autocorrelation. It remains to be seen whether this size distortion can be vitiated by accounting for the autocorrelation using appropriate kernel bandwidths as demonstrated for probit models by Estrella and Rodrigues (1998). This is tackled in the next section. The same conclusions described above are observed when the significance levels are changed to 5% and 1% instead of the 10% level and when the level of trimming on both ends is changed to 10% and 5% from 15%. Furthermore, there is little improvement in the size of the tests when the level of trimming is increased (see Tables 1 to 3) for relatively large T > 100. This contrasts with the findings of Bai and Perron (2004), who suggest that increasing the 13 level of trimming can reduce size distortions in linear models when the data contains high persistence. They further find that a trimming level of 20% is often sufficient to reduce size distortions to manageable levels. However, note that it does seem that for sample size T ≤ 100, increased trimming does improve the size of the test. Overall, the simulations suggest that the Andrews (1993) ‘supremum’ tests are sensitive to autocorrelation when applied to binary probit models, more so than their linear counterparts. Furthermore, while bootstrapping can deal with size distortion brought about by small sample sizes, it is unable to adequately deal with the distortion associated with high autocorrelation. 4 Power of the test 4.1 Design As in section 3.1, the simulations rely on (1) - (3), xt ∼ N(0, 4) and values for ρ, T and Π are as before. In order to assess the power of the tests, a single structural break located at T π = T /2 is introduced as in (5). The pre-break value of β1 = 1 and post-break β2 = 2.6 The simulations also include the case of two structural breaks at π1 = 0.3 and π2 = 0.7. The unrestricted model in this case is: 0 xt β1 + εt for t = 1, . . . , T π yt∗ = x0t β2 + εt for t = (T π1 + 1), . . . , T π2 , 0 xt β3 + εt for t = (T π2 + 1), . . . , T. where the coefficients are Spec. A B β1 1 1 β2 1.5 1.5 β3 2 1 Specifications A and B allows comparing the effects of consecutive structural breaks in the same direction and in the opposite direction. In addition, specification B also has a regime-switching interpretation, since the first and third and subsamples have the same coefficient. The levels of autocorrelation and sample sizes simulated are the same as when testing for size. The effect of different values of β on the probit model can be seen from the CDF of the normal distribution, Φ(x0t β): 6 The experiments were also run for the case when β1 = 1 and β2 = 1.5 pre- and post-break respectively. The results are available in a supplement paper. 14 As β increases (decreases) in magnitude, the probability of observing yt = 1 increases (decreases) when xt is positive. This is usually observed as longer strings of zeroes or ones in the binary dependent variable. In contrast, a change in β is observed in the linear model as a direct change in the magnitude of yt given xt . 4.2 Results The following observations are with regards to the power of the test statistics when the DGP contains a single structural break: 1. The power of all three test statistics increase with T , but all three are less powerful than their counterparts in the linear model. (See Appendix) 2. The three BootSup statistics show greater power than AsySup for small sample sizes (T ≤ 100), which is expected since the three AsySup tests are undersized. 3. A structural break of larger magnitude leads to an increase in the power of the tests. 4. Higher trimming does not always increase power, unlike in the linear models, as shown in Tables 7 to 9 in the appendix. 5. The mean position of the identified breakpoint is generally close to the true breakpoint at the centre, but not as close as in the linear 15 Figure 2: Power under a single break in the probit model (a) AsySupLM (b) BootSupLM (c) AsySupLR (d) BootSupLR (e) AsySupW (f) BootSupW 16 models. Also, the breakpoints identified by the three tests are often far apart. AsySupLR seems to be the closest to identifying the actual breakpoint most of the time. Furthermore, the tests lose precision when the autocorrelation increases.7 6. Table 7 shows that AsySupLM has 100% rejections when the sample size is 10 with 5% trimming. This occurs because no observations are trimmed in this case, which means that the limiting distribution does not converge, thereby invalidating the asymptotic critical values. This is affirmed in Table 6, where AsySupLM has ∞ as its critical value when T = 10. Caution must be applied when interpreting power in cases where the sizes of the test statistics are known to be greatly distorted. In particular, the diminishing power gains in probit models arising from increased trimming when the sample size is large and autocorrelation is high is most likely due to the size distortion dominating any actual power gains. The power of the test statistics when the DGP contains two structural breaks: 1. While in the linear model, the power increases with T , but falls with ρ, the power also increases with T in the probit models, but the effect of ρ are difficult to interpret due to the substantial size distortions. 2. As expected, when the structural breaks are both in the same direction, the test statistics exhibit greater power than when the second break goes in the opposite direction and reverts to the initial parameter value, β1 = β3 = 1. In fact, these tests exhibit the lowest power out of all the simulations. This is the case for both linear and probit models, and matches the conclusions of Bai and Perron (2004), as well as Prodan (2008). 3. The average estimated breakpoint is located between both true breakpoints. The simulation output suggests that the estimated breakpoints are almost equally concentrated around each of the two actual breakpoints. 5 Concluding comments The Andrews (1993) ‘supremum’ test statistics are commonly used in empirical studies to detect the presence of a structural change in both linear and 7 Results are available in a “supplement” paper 17 Figure 3: Power under 2 breaks: β1 = 1, β2 = 1.5, β3 = 2 (a) AsySupLM (b) BootSupLM (c) AsySupLR (d) BootSupLR (e) AsySupW (f) BootSupW 18 Figure 4: Power under 2 breaks: β1 = 1, β2 = 1.5, β3 = 1 (a) AsySupLM (b) BootSupLM (c) AsySupLR (d) BootSupLR (e) AsySupW (f) BootSupW 19 non-linear models. While the properties of the test statistics in linear models have been well-researched, the literature available for non-linear models is somewhat sparse. Previous studies suggest that the tests work well under standard i.i.d. assumptions in large samples when applied to linear models, and that bootstrapping can improve the performances of the tests when conditions are more adverse. The results presented in this paper concur in part with those studies, but further suggest that the performances of the asymptotic and bootstrap tests in probit models both deteriorate when affected by autocorrelation in the residuals. In particular, the tests dramatically over-reject when the degree of autocorrelation is high, are substantially less powerful, and become less precise in identifying the location of the breakpoint. This research lays the groundwork for several possible avenues for further study. An important extension of this paper would be to determine the effectiveness of various kernel bandwidths in accounting for autocorrelation in the residuals of the probit model in order to find out whether the size distortions can indeed be reduced to a manageable level while maintaining decent power. An equally important study would be to further investigate the properties of the Bai and Perron (1998) multiple break tests in order to establish the validity of the limiting distributions and asymptotic critical values for nonlinear models. Further study could also be done to investigate the effect of negative autocorrelation in the residuals, as well as the performance of the tests in detecting partial breaks. Finally, the ability of the tests to locate the position and not just the presence of the breakpoint should also be assessed. Bai and Perron (1998) do propose a method to calculate confidence intervals in a linear application of their tests, which would naturally also apply to the Andrews (1993) tests in the linear model but not necessarily in non-linear models. Acknowledgements The authors would like to thank Andrey Vasnev, Michael McAleer, Richard Gerlach and Tommaso Proeitti for their insightful contribution as well as the Participants of MODSIM 2011 conference. A Tables 20 Table 1: Size of the Sup-LM test under different trimming levels at 10% significance α = 0.10 Linear AsySupLM Linear BootSup Probit AsySupLM Probit BootSupLM ρ T 0.15 0.10 0.05 0.15 0.10 0.05 0.15 0.10 0.05 0.15 0.10 0.05 0 10 30 50 100 200 350 500 0.020 0.055 0.062 0.069 0.073 0.084 0.078 0.008 0.052 0.057 0.068 0.075 0.081 0.081 0.003 0.038 0.045 0.061 0.072 0.076 0.072 0.102 0.103 0.107 0.091 0.108 0.094 0.088 0.109 0.110 0.115 0.096 0.105 0.090 0.091 0.109 0.105 0.115 0.089 0.112 0.093 0.089 0.013 0.028 0.046 0.061 0.077 0.066 0.081 0.010 0.047 0.063 0.069 0.091 0.066 0.086 0.999 0.083 0.083 0.083 0.110 0.088 0.098 0.134 0.110 0.130 0.084 0.100 0.088 0.096 0.139 0.100 0.118 0.074 0.111 0.090 0.105 0.000 0.117 0.107 0.064 0.111 0.080 0.102 0.4 10 30 50 100 200 350 500 0.010 0.044 0.064 0.075 0.086 0.094 0.091 0.007 0.047 0.063 0.067 0.088 0.086 0.090 0.002 0.039 0.067 0.069 0.084 0.087 0.086 0.101 0.123 0.094 0.095 0.110 0.101 0.102 0.100 0.117 0.100 0.098 0.123 0.099 0.098 0.100 0.125 0.109 0.101 0.130 0.100 0.107 0.015 0.041 0.054 0.077 0.086 0.085 0.095 0.010 0.052 0.066 0.088 0.091 0.091 0.090 1.000 0.073 0.090 0.110 0.112 0.101 0.110 0.133 0.119 0.090 0.106 0.128 0.117 0.127 0.137 0.113 0.082 0.119 0.119 0.115 0.113 0.000 0.091 0.097 0.110 0.124 0.104 0.110 0.7 10 30 50 100 200 350 500 0.014 0.060 0.066 0.074 0.079 0.065 0.096 0.008 0.056 0.061 0.075 0.073 0.061 0.093 0.003 0.053 0.065 0.074 0.083 0.057 0.101 0.111 0.117 0.111 0.131 0.095 0.070 0.091 0.103 0.121 0.121 0.124 0.102 0.074 0.091 0.103 0.126 0.124 0.127 0.106 0.082 0.093 0.022 0.055 0.068 0.100 0.137 0.142 0.155 0.018 0.062 0.079 0.103 0.152 0.159 0.157 1.000 0.072 0.100 0.109 0.178 0.173 0.159 0.131 0.158 0.139 0.133 0.193 0.165 0.195 0.125 0.140 0.125 0.128 0.204 0.172 0.202 0.000 0.140 0.113 0.108 0.205 0.174 0.172 0.9 10 30 50 100 200 350 500 0.024 0.074 0.081 0.092 0.107 0.088 0.098 0.014 0.075 0.078 0.095 0.121 0.089 0.106 0.005 0.069 0.088 0.103 0.130 0.108 0.110 0.163 0.130 0.121 0.132 0.127 0.118 0.091 0.148 0.138 0.129 0.136 0.145 0.119 0.101 0.148 0.137 0.142 0.156 0.155 0.137 0.107 0.032 0.091 0.177 0.223 0.288 0.360 0.382 0.029 0.094 0.171 0.225 0.293 0.349 0.395 1.000 0.103 0.181 0.219 0.288 0.343 0.380 0.147 0.171 0.280 0.301 0.322 0.395 0.390 0.139 0.169 0.262 0.289 0.332 0.379 0.415 0.000 0.146 0.222 0.230 0.298 0.351 0.386 0.99 10 30 50 100 200 350 500 0.018 0.090 0.113 0.133 0.139 0.127 0.113 0.013 0.086 0.120 0.141 0.130 0.128 0.127 0.004 0.083 0.134 0.149 0.134 0.139 0.146 0.172 0.156 0.169 0.162 0.158 0.159 0.120 0.170 0.166 0.188 0.171 0.163 0.166 0.129 0.170 0.178 0.219 0.202 0.179 0.171 0.154 0.037 0.147 0.242 0.404 0.527 0.652 0.710 0.032 0.146 0.221 0.392 0.533 0.657 0.731 0.999 0.149 0.213 0.352 0.527 0.655 0.747 0.143 0.247 0.324 0.429 0.554 0.670 0.724 0.134 0.251 0.310 0.415 0.563 0.682 0.753 0.000 0.211 0.256 0.373 0.558 0.678 0.772 21 Table 2: Size of the Sup-LR test under different trimming levels at 10% significance α = 0.10 Linear AsySupLR Linear BootSup Probit AsySupLR Probit BootSupLR ρ T 0.15 0.10 0.05 0.15 0.10 0.05 0.15 0.10 0.05 0.15 0.10 0.05 0 10 30 50 100 200 350 500 0.093 0.085 0.081 0.077 0.080 0.088 0.078 0.094 0.079 0.073 0.075 0.080 0.088 0.081 0.081 0.071 0.068 0.075 0.078 0.080 0.076 0.102 0.103 0.107 0.091 0.108 0.094 0.088 0.109 0.110 0.115 0.096 0.105 0.090 0.091 0.109 0.105 0.115 0.089 0.112 0.093 0.089 0.013 0.047 0.058 0.095 0.104 0.086 0.091 0.010 0.039 0.049 0.076 0.114 0.091 0.100 0.008 0.039 0.045 0.059 0.098 0.101 0.115 0.127 0.091 0.130 0.100 0.104 0.090 0.089 0.123 0.098 0.130 0.098 0.108 0.091 0.106 0.123 0.103 0.134 0.092 0.109 0.099 0.104 0.4 10 30 50 100 200 350 500 0.096 0.082 0.079 0.085 0.090 0.101 0.094 0.090 0.080 0.078 0.076 0.098 0.090 0.091 0.068 0.072 0.083 0.076 0.092 0.089 0.092 0.101 0.123 0.094 0.095 0.110 0.101 0.102 0.100 0.117 0.100 0.098 0.123 0.099 0.098 0.100 0.125 0.109 0.101 0.130 0.100 0.107 0.021 0.058 0.093 0.101 0.117 0.107 0.111 0.020 0.059 0.076 0.091 0.120 0.106 0.109 0.019 0.056 0.073 0.083 0.107 0.107 0.110 0.121 0.122 0.099 0.132 0.117 0.120 0.121 0.129 0.120 0.103 0.128 0.122 0.125 0.121 0.129 0.127 0.107 0.128 0.115 0.121 0.129 0.7 10 30 50 100 200 350 500 0.118 0.089 0.085 0.080 0.081 0.068 0.097 0.101 0.090 0.090 0.082 0.077 0.065 0.095 0.085 0.094 0.083 0.089 0.089 0.063 0.102 0.111 0.117 0.111 0.131 0.095 0.070 0.091 0.103 0.121 0.121 0.124 0.102 0.074 0.091 0.103 0.126 0.124 0.127 0.106 0.082 0.093 0.031 0.078 0.130 0.155 0.166 0.161 0.161 0.026 0.073 0.108 0.141 0.173 0.161 0.176 0.023 0.068 0.093 0.124 0.159 0.188 0.180 0.124 0.136 0.153 0.144 0.202 0.160 0.196 0.128 0.136 0.153 0.143 0.200 0.162 0.205 0.128 0.141 0.152 0.147 0.205 0.186 0.196 0.9 10 30 50 100 200 350 500 0.165 0.103 0.101 0.097 0.116 0.092 0.100 0.143 0.099 0.099 0.106 0.127 0.094 0.108 0.114 0.102 0.107 0.116 0.142 0.109 0.113 0.163 0.130 0.121 0.132 0.127 0.118 0.091 0.148 0.138 0.129 0.136 0.145 0.119 0.101 0.148 0.137 0.142 0.156 0.155 0.137 0.107 0.062 0.165 0.260 0.282 0.336 0.403 0.411 0.055 0.147 0.237 0.293 0.353 0.403 0.427 0.045 0.129 0.210 0.264 0.365 0.416 0.430 0.147 0.185 0.271 0.295 0.349 0.415 0.428 0.143 0.187 0.262 0.298 0.368 0.434 0.459 0.143 0.176 0.248 0.296 0.366 0.436 0.443 0.99 10 30 50 100 200 350 500 0.161 0.131 0.133 0.137 0.142 0.129 0.116 0.137 0.127 0.141 0.151 0.136 0.133 0.128 0.110 0.125 0.159 0.166 0.145 0.144 0.150 0.172 0.156 0.169 0.162 0.158 0.159 0.120 0.170 0.166 0.188 0.171 0.163 0.166 0.129 0.170 0.178 0.219 0.202 0.179 0.171 0.154 0.070 0.270 0.355 0.490 0.574 0.677 0.731 0.066 0.249 0.350 0.510 0.588 0.695 0.767 0.048 0.214 0.316 0.513 0.613 0.733 0.791 0.142 0.270 0.321 0.469 0.571 0.671 0.733 0.126 0.265 0.315 0.471 0.587 0.687 0.771 0.126 0.259 0.317 0.451 0.573 0.717 0.806 22 Table 3: Size of the Sup-Wald test under different trimming levels at 10% significance α = 0.10 Linear AsySupWald Linear BootSup Probit AsySupWald Probit BootSupWald ρ T 0.15 0.10 0.05 0.15 0.10 0.05 0.15 0.10 0.05 0.15 0.10 0.05 0 10 30 50 100 200 350 500 0.188 0.104 0.101 0.083 0.085 0.091 0.080 0.191 0.109 0.101 0.089 0.087 0.090 0.081 0.170 0.102 0.089 0.081 0.087 0.086 0.076 0.102 0.103 0.107 0.091 0.108 0.094 0.088 0.109 0.110 0.115 0.096 0.105 0.090 0.091 0.109 0.105 0.115 0.089 0.112 0.093 0.089 0.000 0.006 0.016 0.019 0.049 0.042 0.055 0.000 0.007 0.016 0.019 0.052 0.053 0.059 0.000 0.007 0.016 0.021 0.054 0.051 0.060 0.109 0.105 0.123 0.088 0.099 0.074 0.091 0.109 0.114 0.116 0.078 0.105 0.086 0.096 0.109 0.110 0.112 0.071 0.107 0.084 0.092 0.4 10 30 50 100 200 350 500 0.195 0.120 0.089 0.091 0.098 0.102 0.095 0.196 0.117 0.098 0.086 0.105 0.094 0.096 0.172 0.112 0.099 0.091 0.102 0.093 0.095 0.101 0.123 0.094 0.095 0.110 0.101 0.102 0.100 0.117 0.100 0.098 0.123 0.099 0.098 0.100 0.125 0.109 0.101 0.130 0.100 0.107 0.000 0.001 0.007 0.026 0.050 0.055 0.070 0.000 0.001 0.007 0.025 0.042 0.067 0.060 0.000 0.001 0.006 0.024 0.042 0.062 0.065 0.113 0.093 0.079 0.111 0.135 0.118 0.123 0.109 0.105 0.088 0.111 0.125 0.130 0.110 0.109 0.101 0.091 0.116 0.114 0.126 0.123 0.7 10 30 50 100 200 350 500 0.228 0.117 0.105 0.092 0.083 0.069 0.099 0.228 0.121 0.113 0.095 0.088 0.066 0.097 0.201 0.128 0.113 0.099 0.093 0.067 0.104 0.111 0.117 0.111 0.131 0.095 0.070 0.091 0.103 0.121 0.121 0.124 0.102 0.074 0.091 0.103 0.126 0.124 0.127 0.106 0.082 0.093 0.000 0.001 0.016 0.046 0.090 0.117 0.123 0.000 0.001 0.015 0.046 0.090 0.107 0.128 0.000 0.001 0.014 0.047 0.088 0.107 0.120 0.099 0.121 0.142 0.146 0.194 0.166 0.196 0.105 0.122 0.138 0.127 0.205 0.173 0.204 0.105 0.123 0.124 0.136 0.201 0.180 0.195 0.9 10 30 50 100 200 350 500 0.259 0.129 0.115 0.105 0.122 0.093 0.107 0.257 0.139 0.121 0.114 0.131 0.098 0.112 0.234 0.139 0.129 0.126 0.144 0.112 0.114 0.163 0.130 0.121 0.132 0.127 0.118 0.091 0.148 0.138 0.129 0.136 0.145 0.119 0.101 0.148 0.137 0.142 0.156 0.155 0.137 0.107 0.000 0.012 0.058 0.151 0.231 0.328 0.363 0.000 0.008 0.052 0.140 0.228 0.312 0.359 0.000 0.005 0.041 0.129 0.209 0.285 0.340 0.104 0.167 0.263 0.285 0.337 0.410 0.411 0.097 0.164 0.254 0.293 0.347 0.417 0.435 0.097 0.166 0.249 0.292 0.339 0.394 0.433 0.99 10 30 50 100 200 350 500 0.278 0.160 0.155 0.160 0.148 0.133 0.118 0.266 0.166 0.164 0.160 0.150 0.134 0.129 0.241 0.178 0.181 0.181 0.151 0.149 0.153 0.172 0.156 0.169 0.162 0.158 0.159 0.120 0.170 0.166 0.188 0.171 0.163 0.166 0.129 0.170 0.178 0.219 0.202 0.179 0.171 0.154 0.000 0.027 0.123 0.307 0.506 0.649 0.713 0.000 0.019 0.107 0.280 0.483 0.647 0.727 0.000 0.010 0.092 0.237 0.443 0.617 0.716 0.100 0.227 0.311 0.416 0.573 0.674 0.742 0.099 0.233 0.304 0.422 0.576 0.677 0.759 0.099 0.232 0.296 0.423 0.583 0.667 0.771 23 Table 4: Bootstrap critical values for 15% trimming and 10% significance α = 0.10 Linear Model Probit Model ρ T LM LR Wald LM LR Wald 0 10 30 50 100 200 350 500 5.01 5.77 6.05 6.45 6.40 6.92 6.90 6.95 6.40 6.45 6.67 6.50 6.99 6.95 10.03 7.14 6.88 6.90 6.61 7.06 7.00 2.31 4.54 4.84 6.13 6.18 6.42 6.67 3.66 5.82 5.84 7.02 7.11 7.03 7.21 0.78 2.36 3.02 4.50 5.39 5.97 6.12 0.4 10 30 50 100 200 350 500 5.06 5.68 6.17 6.44 6.50 7.02 6.89 7.05 6.30 6.59 6.65 6.61 7.09 6.94 10.24 7.01 7.04 6.88 6.72 7.16 6.99 2.62 4.63 5.76 5.95 5.89 6.40 6.44 4.00 5.72 6.74 6.63 7.11 6.82 6.85 0.97 2.46 3.65 4.52 5.10 5.79 6.04 0.7 10 30 50 100 200 350 500 5.12 5.75 6.12 6.04 6.50 6.94 7.23 7.18 6.38 6.53 6.23 6.61 7.01 7.29 10.50 7.11 6.97 6.43 6.72 7.08 7.34 3.04 4.37 5.53 6.18 5.96 6.73 6.35 4.51 5.90 6.73 7.33 6.50 7.14 6.51 1.25 2.86 3.73 4.86 5.28 6.16 5.96 0.9 10 30 50 100 200 350 500 5.12 5.75 6.12 6.04 6.79 6.48 7.23 7.18 6.38 6.53 6.23 6.91 6.54 7.29 10.50 7.11 6.97 6.43 7.03 6.60 7.34 3.57 5.31 5.48 5.98 6.61 6.72 6.97 5.12 6.78 6.99 7.04 6.92 6.98 6.92 1.53 3.53 4.31 5.28 5.96 6.36 6.59 0.99 10 30 50 100 200 350 500 4.99 5.81 5.89 6.55 6.60 6.48 6.96 6.91 6.46 6.27 6.78 6.71 6.54 7.01 9.96 7.21 6.68 7.01 6.83 6.60 7.05 3.85 5.67 5.88 6.84 6.60 6.82 6.85 5.39 7.11 7.74 7.36 7.14 7.23 6.91 1.70 3.98 4.86 6.01 6.36 6.82 6.66 24 Table 5: Bootstrap critical values for 10% trimming and 10% significance α = 0.10 Linear Model Probit Model ρ T LM LR Wald LM LR Wald 0 10 30 50 100 200 350 500 5.12 6.02 6.31 6.95 6.81 7.36 7.16 7.17 6.72 6.74 7.20 6.93 7.44 7.21 10.49 7.53 7.22 7.46 7.05 7.52 7.26 2.69 5.68 5.66 7.33 6.99 7.14 7.11 4.15 5.94 5.91 7.11 7.74 7.59 7.51 0.85 2.57 3.32 4.95 5.71 6.42 6.48 0.4 10 30 50 100 200 350 500 5.22 6.05 6.49 6.79 6.83 7.30 7.29 7.38 6.75 6.96 7.03 6.94 7.37 7.35 10.91 7.57 7.46 7.29 7.07 7.45 7.40 2.89 5.46 6.79 6.48 6.70 6.83 7.11 4.28 5.77 6.90 6.79 7.56 7.22 7.31 1.07 2.65 3.94 4.88 5.39 5.99 6.51 0.7 10 30 50 100 200 350 500 5.28 6.05 6.39 6.51 6.94 7.22 7.66 7.50 6.76 6.84 6.73 7.06 7.29 7.72 11.17 7.58 7.33 6.96 7.19 7.37 7.78 3.45 5.31 6.28 6.81 6.44 7.24 6.87 4.83 6.07 6.89 7.55 7.06 7.58 7.10 1.28 3.04 3.97 5.27 5.48 6.51 6.28 0.9 10 30 50 100 200 350 500 5.28 6.05 6.39 6.51 7.02 6.89 7.66 7.50 6.76 6.84 6.73 7.14 6.95 7.72 11.17 7.58 7.33 6.96 7.27 7.02 7.78 3.88 5.84 5.99 6.54 7.01 7.28 7.29 5.37 7.00 7.25 7.46 7.42 7.31 7.18 1.61 3.66 4.50 5.43 6.16 6.54 6.79 0.99 10 30 50 100 200 350 500 5.08 6.04 6.17 6.78 7.01 6.89 7.42 7.10 6.74 6.58 7.02 7.14 6.95 7.48 10.33 7.56 7.03 7.27 7.27 7.02 7.53 4.16 6.03 6.28 7.32 7.02 7.17 7.12 5.67 7.29 8.00 8.13 7.61 7.74 7.48 1.72 4.00 4.98 6.08 6.57 7.16 7.05 25 Table 6: Bootstrap critical values for 5% trimming and 10% significance α = 0.10 Linear Model Probit Model ρ T LM LR Wald LM LR Wald 0 10 30 50 100 200 350 500 5.12 6.36 6.63 7.38 7.17 7.72 7.77 7.17 7.15 7.12 7.67 7.30 7.81 7.83 10.49 8.07 7.65 7.97 7.44 7.90 7.89 ∞ 6.80 7.21 8.81 8.05 8.56 7.93 4.15 6.02 6.04 7.21 7.91 8.21 8.48 0.85 2.70 3.65 5.50 6.17 6.90 6.97 0.4 10 30 50 100 200 350 500 5.22 6.24 6.89 7.29 7.28 7.80 7.72 7.38 7.00 7.42 7.56 7.41 7.89 7.78 10.91 7.88 8.00 7.86 7.55 7.98 7.84 ∞ 7.02 7.80 8.17 7.75 7.93 8.10 4.28 6.09 7.10 6.90 7.91 7.83 7.77 1.07 2.86 4.17 5.14 6.12 6.46 6.86 0.7 10 30 50 100 200 350 500 5.28 6.43 6.76 6.86 7.44 7.63 8.24 7.50 7.24 7.26 7.10 7.58 7.71 8.31 11.17 8.19 7.81 7.36 7.72 7.80 8.38 ∞ 6.27 7.45 8.22 7.48 8.11 7.89 4.83 6.30 7.07 7.64 7.54 8.14 7.98 1.28 3.12 4.22 5.51 5.86 6.74 6.82 0.9 10 30 50 100 200 350 500 5.28 6.43 6.76 6.86 7.55 7.35 8.24 7.50 7.24 7.26 7.10 7.70 7.42 8.31 11.17 8.19 7.81 7.36 7.85 7.50 8.38 ∞ 7.00 7.15 7.89 7.92 8.03 8.04 5.37 7.20 7.56 7.75 8.11 7.83 7.96 1.61 3.67 4.56 5.58 6.55 6.99 7.09 0.99 10 30 50 100 200 350 500 5.08 6.42 6.47 7.15 7.38 7.35 7.92 7.10 7.23 6.93 7.42 7.52 7.42 7.99 10.33 8.17 7.44 7.70 7.66 7.50 8.05 ∞ 6.96 7.45 7.90 7.68 7.81 7.62 5.67 7.38 8.11 8.81 8.67 8.27 7.94 1.72 4.02 5.07 6.10 6.59 7.40 7.35 26 B B.1 Power of Andrews (1993) tests β1 = 1, β2 = 2 Table 7: Power of the Sup-LM test under different trimming levels at 10% significance when β1 = 1, β2 = 2 α = 0.10 Linear AsySupLM Linear BootSup Probit AsySupLM Probit BootSupLM ρ T 0.15 0.10 0.05 0.15 0.10 0.05 0.15 0.10 0.05 0.15 0.10 0.05 0 10 30 50 100 200 350 500 0.184 0.970 1.000 1.000 1.000 1.000 1.000 0.125 0.967 1.000 1.000 1.000 1.000 1.000 0.063 0.956 1.000 1.000 1.000 1.000 1.000 0.552 0.991 1.000 1.000 1.000 1.000 1.000 0.540 0.991 1.000 1.000 1.000 1.000 1.000 0.540 0.988 1.000 1.000 1.000 1.000 1.000 0.000 0.022 0.083 0.211 0.501 0.810 0.916 0.000 0.046 0.110 0.215 0.477 0.792 0.906 1.000 0.063 0.129 0.228 0.445 0.765 0.891 0.141 0.152 0.185 0.295 0.599 0.857 0.939 0.169 0.154 0.162 0.232 0.543 0.837 0.915 0.000 0.117 0.144 0.184 0.387 0.756 0.891 0.4 10 30 50 100 200 350 500 0.179 0.953 0.997 1.000 1.000 1.000 1.000 0.117 0.939 0.996 1.000 1.000 1.000 1.000 0.056 0.923 0.996 1.000 1.000 1.000 1.000 0.561 0.984 0.998 1.000 1.000 1.000 1.000 0.549 0.971 0.997 1.000 1.000 1.000 1.000 0.549 0.963 0.997 1.000 1.000 1.000 1.000 0.001 0.041 0.092 0.246 0.537 0.806 0.939 0.001 0.062 0.116 0.241 0.507 0.785 0.932 1.000 0.076 0.137 0.252 0.478 0.759 0.913 0.073 0.170 0.212 0.322 0.617 0.844 0.946 0.095 0.156 0.199 0.296 0.585 0.824 0.943 0.000 0.126 0.147 0.230 0.468 0.754 0.919 0.7 10 30 50 100 200 350 500 0.154 0.829 0.981 1.000 1.000 1.000 1.000 0.108 0.803 0.971 1.000 1.000 1.000 1.000 0.049 0.776 0.965 1.000 1.000 1.000 1.000 0.446 0.877 0.985 1.000 1.000 1.000 1.000 0.418 0.867 0.984 1.000 1.000 1.000 1.000 0.418 0.856 0.981 1.000 1.000 1.000 1.000 0.003 0.052 0.119 0.312 0.606 0.855 0.946 0.004 0.073 0.137 0.304 0.580 0.830 0.943 0.999 0.083 0.150 0.298 0.557 0.812 0.938 0.106 0.207 0.238 0.430 0.708 0.883 0.953 0.114 0.182 0.191 0.406 0.659 0.870 0.950 0.000 0.158 0.178 0.317 0.566 0.833 0.941 0.9 10 30 50 100 200 350 500 0.115 0.579 0.776 0.964 0.999 1.000 1.000 0.076 0.557 0.760 0.960 0.999 1.000 1.000 0.035 0.513 0.740 0.951 1.000 1.000 1.000 0.343 0.705 0.847 0.980 0.999 1.000 1.000 0.337 0.693 0.831 0.978 0.999 1.000 1.000 0.337 0.675 0.826 0.970 1.000 1.000 1.000 0.012 0.064 0.153 0.403 0.664 0.872 0.937 0.009 0.067 0.149 0.387 0.634 0.867 0.928 1.000 0.066 0.146 0.366 0.616 0.851 0.921 0.121 0.190 0.229 0.470 0.715 0.897 0.943 0.135 0.146 0.229 0.422 0.693 0.888 0.943 0.000 0.094 0.161 0.360 0.643 0.877 0.933 0.99 10 30 50 100 200 350 500 0.085 0.412 0.449 0.566 0.668 0.806 0.876 0.056 0.383 0.438 0.546 0.649 0.792 0.865 0.034 0.357 0.402 0.521 0.641 0.780 0.850 0.339 0.511 0.539 0.628 0.701 0.805 0.885 0.328 0.515 0.547 0.584 0.689 0.796 0.874 0.328 0.497 0.546 0.579 0.682 0.789 0.859 0.015 0.087 0.184 0.408 0.612 0.774 0.856 0.012 0.078 0.176 0.390 0.600 0.796 0.870 1.000 0.090 0.163 0.363 0.566 0.779 0.868 0.101 0.182 0.272 0.456 0.643 0.810 0.867 0.093 0.162 0.273 0.439 0.628 0.824 0.880 0.000 0.132 0.232 0.408 0.592 0.802 0.878 27 Table 8: Power of the Sup-LR test under different trimming levels at 10% significance when β1 = 1, β2 = 2 α = 0.10 Linear AsySupLR Linear BootSup Probit AsySupLR Probit BootSupLR ρ T 0.15 0.10 0.05 0.15 0.10 0.05 0.15 0.10 0.05 0.15 0.10 0.05 0 10 30 50 100 200 350 500 0.562 0.985 1.000 1.000 1.000 1.000 1.000 0.536 0.977 1.000 1.000 1.000 1.000 1.000 0.501 0.971 1.000 1.000 1.000 1.000 1.000 0.552 0.991 1.000 1.000 1.000 1.000 1.000 0.540 0.991 1.000 1.000 1.000 1.000 1.000 0.540 0.988 1.000 1.000 1.000 1.000 1.000 0.006 0.063 0.151 0.319 0.602 0.857 0.929 0.011 0.053 0.133 0.281 0.572 0.835 0.924 0.009 0.043 0.106 0.247 0.526 0.812 0.911 0.149 0.173 0.236 0.328 0.597 0.853 0.928 0.157 0.180 0.228 0.324 0.577 0.824 0.924 0.157 0.181 0.231 0.323 0.563 0.816 0.906 0.4 10 30 50 100 200 350 500 0.535 0.965 0.997 1.000 1.000 1.000 1.000 0.507 0.958 0.997 1.000 1.000 1.000 1.000 0.464 0.953 0.996 1.000 1.000 1.000 1.000 0.561 0.984 0.998 1.000 1.000 1.000 1.000 0.549 0.971 0.997 1.000 1.000 1.000 1.000 0.549 0.963 0.997 1.000 1.000 1.000 1.000 0.008 0.075 0.169 0.343 0.630 0.847 0.946 0.014 0.067 0.143 0.306 0.604 0.830 0.941 0.011 0.056 0.116 0.262 0.546 0.806 0.930 0.108 0.174 0.223 0.331 0.633 0.856 0.946 0.107 0.176 0.228 0.333 0.597 0.826 0.940 0.107 0.171 0.232 0.322 0.580 0.807 0.927 0.7 10 30 50 100 200 350 500 0.443 0.864 0.984 1.000 1.000 1.000 1.000 0.418 0.850 0.981 1.000 1.000 1.000 1.000 0.386 0.832 0.971 1.000 1.000 1.000 1.000 0.446 0.877 0.985 1.000 1.000 1.000 1.000 0.418 0.867 0.984 1.000 1.000 1.000 1.000 0.418 0.856 0.981 1.000 1.000 1.000 1.000 0.030 0.114 0.197 0.418 0.674 0.877 0.956 0.027 0.103 0.172 0.383 0.646 0.868 0.955 0.021 0.091 0.158 0.345 0.614 0.851 0.947 0.128 0.186 0.250 0.422 0.684 0.882 0.961 0.130 0.193 0.257 0.425 0.650 0.870 0.955 0.130 0.191 0.232 0.404 0.648 0.834 0.947 0.9 10 30 50 100 200 350 500 0.347 0.647 0.807 0.969 0.999 1.000 1.000 0.323 0.624 0.790 0.962 0.999 1.000 1.000 0.289 0.588 0.778 0.959 1.000 1.000 1.000 0.343 0.705 0.847 0.980 0.999 1.000 1.000 0.337 0.693 0.831 0.978 0.999 1.000 1.000 0.337 0.675 0.826 0.970 1.000 1.000 1.000 0.032 0.157 0.263 0.509 0.732 0.886 0.943 0.025 0.144 0.238 0.486 0.721 0.881 0.939 0.017 0.121 0.208 0.446 0.700 0.886 0.938 0.136 0.221 0.272 0.534 0.737 0.890 0.946 0.144 0.209 0.270 0.526 0.728 0.886 0.939 0.144 0.204 0.252 0.509 0.703 0.893 0.941 0.99 10 30 50 100 200 350 500 0.342 0.456 0.485 0.580 0.677 0.812 0.879 0.319 0.443 0.480 0.564 0.660 0.796 0.866 0.284 0.433 0.464 0.548 0.650 0.784 0.854 0.339 0.511 0.539 0.628 0.701 0.805 0.885 0.328 0.515 0.547 0.584 0.689 0.796 0.874 0.328 0.497 0.546 0.579 0.682 0.789 0.859 0.041 0.182 0.322 0.517 0.654 0.789 0.865 0.037 0.162 0.298 0.517 0.671 0.825 0.885 0.030 0.145 0.270 0.508 0.684 0.836 0.893 0.120 0.205 0.367 0.518 0.654 0.795 0.872 0.113 0.197 0.353 0.511 0.671 0.828 0.888 0.113 0.198 0.341 0.485 0.667 0.840 0.896 28 Table 9: Power of the Sup-Wald test under different trimming levels at 10% significance when β1 = 1, β2 = 2 α = 0.10 Linear AsySupWald Linear BootSup Probit AsySupWald Probit BootSupWald ρ T 0.15 0.10 0.05 0.15 0.10 0.05 0.15 0.10 0.05 0.15 0.10 0.05 0 10 30 50 100 200 350 500 0.698 0.991 1.000 1.000 1.000 1.000 1.000 0.697 0.990 1.000 1.000 1.000 1.000 1.000 0.672 0.986 1.000 1.000 1.000 1.000 1.000 0.552 0.991 1.000 1.000 1.000 1.000 1.000 0.540 0.991 1.000 1.000 1.000 1.000 1.000 0.540 0.988 1.000 1.000 1.000 1.000 1.000 0.000 0.006 0.016 0.085 0.303 0.758 0.898 0.000 0.008 0.018 0.088 0.282 0.715 0.877 0.000 0.009 0.018 0.090 0.245 0.674 0.863 0.075 0.124 0.135 0.223 0.569 0.855 0.945 0.079 0.132 0.136 0.203 0.530 0.846 0.921 0.079 0.119 0.137 0.198 0.407 0.809 0.900 0.4 10 30 50 100 200 350 500 0.678 0.981 0.997 1.000 1.000 1.000 1.000 0.676 0.971 0.997 1.000 1.000 1.000 1.000 0.651 0.964 0.997 1.000 1.000 1.000 1.000 0.561 0.984 0.998 1.000 1.000 1.000 1.000 0.549 0.971 0.997 1.000 1.000 1.000 1.000 0.549 0.963 0.997 1.000 1.000 1.000 1.000 0.000 0.001 0.024 0.096 0.374 0.747 0.925 0.000 0.001 0.025 0.098 0.327 0.723 0.912 0.000 0.002 0.026 0.091 0.286 0.684 0.899 0.075 0.123 0.186 0.302 0.614 0.843 0.950 0.082 0.138 0.194 0.253 0.572 0.834 0.946 0.082 0.138 0.177 0.217 0.540 0.795 0.935 0.7 10 30 50 100 200 350 500 0.606 0.881 0.985 1.000 1.000 1.000 1.000 0.592 0.877 0.984 1.000 1.000 1.000 1.000 0.565 0.864 0.981 1.000 1.000 1.000 1.000 0.446 0.877 0.985 1.000 1.000 1.000 1.000 0.418 0.867 0.984 1.000 1.000 1.000 1.000 0.418 0.856 0.981 1.000 1.000 1.000 1.000 0.000 0.007 0.013 0.120 0.490 0.809 0.941 0.000 0.008 0.014 0.111 0.440 0.788 0.927 0.000 0.009 0.012 0.092 0.401 0.764 0.912 0.080 0.159 0.228 0.417 0.686 0.896 0.957 0.085 0.174 0.197 0.374 0.664 0.886 0.958 0.085 0.173 0.206 0.356 0.630 0.857 0.960 0.9 10 30 50 100 200 350 500 0.511 0.697 0.829 0.973 0.999 1.000 1.000 0.482 0.675 0.821 0.967 0.999 1.000 1.000 0.448 0.659 0.807 0.961 1.000 1.000 1.000 0.343 0.705 0.847 0.980 0.999 1.000 1.000 0.337 0.693 0.831 0.978 0.999 1.000 1.000 0.337 0.675 0.826 0.970 1.000 1.000 1.000 0.000 0.007 0.050 0.254 0.601 0.854 0.927 0.000 0.007 0.044 0.233 0.560 0.846 0.921 0.000 0.007 0.036 0.208 0.536 0.826 0.914 0.103 0.169 0.238 0.484 0.724 0.896 0.944 0.111 0.172 0.233 0.446 0.723 0.894 0.947 0.111 0.175 0.220 0.421 0.687 0.891 0.940 0.99 10 30 50 100 200 350 500 0.475 0.513 0.521 0.596 0.685 0.814 0.881 0.462 0.495 0.515 0.583 0.668 0.796 0.867 0.436 0.480 0.506 0.567 0.656 0.789 0.857 0.339 0.511 0.539 0.628 0.701 0.805 0.885 0.328 0.515 0.547 0.584 0.689 0.796 0.874 0.328 0.497 0.546 0.579 0.682 0.789 0.859 0.001 0.014 0.073 0.317 0.578 0.765 0.853 0.001 0.009 0.060 0.286 0.556 0.768 0.862 0.001 0.005 0.046 0.245 0.511 0.747 0.851 0.096 0.160 0.279 0.447 0.660 0.808 0.867 0.082 0.156 0.266 0.439 0.654 0.824 0.878 0.082 0.155 0.265 0.441 0.636 0.814 0.889 29 B.2 β1 = 1, β2 = 1.5, β3 = 2 Table 10: Power of the Sup-LM test under different trimming levels at 10% significance when β1 = 1, β2 = 1.5, β3 = 2 α = 0.10 Linear AsySupLM Linear BootSup Probit AsySupLM Probit BootSupLM ρ T 0.15 0.10 0.05 0.15 0.10 0.05 0.15 0.10 0.05 0.15 0.10 0.05 0 10 30 50 100 200 350 500 0.090 0.869 0.984 1.000 1.000 1.000 1.000 0.065 0.842 0.982 1.000 1.000 1.000 1.000 0.030 0.794 0.975 1.000 1.000 1.000 1.000 0.380 0.935 0.991 1.000 1.000 1.000 1.000 0.356 0.929 0.991 1.000 1.000 1.000 1.000 0.356 0.916 0.988 1.000 1.000 1.000 1.000 0.001 0.032 0.094 0.218 0.428 0.664 0.786 0.000 0.061 0.123 0.235 0.429 0.647 0.774 1.000 0.076 0.138 0.254 0.429 0.637 0.754 0.149 0.144 0.231 0.305 0.502 0.734 0.821 0.163 0.149 0.226 0.289 0.479 0.718 0.768 0.000 0.107 0.185 0.233 0.410 0.657 0.739 0.4 10 30 50 100 200 350 500 0.084 0.798 0.971 1.000 1.000 1.000 1.000 0.053 0.770 0.965 1.000 1.000 1.000 1.000 0.020 0.723 0.957 1.000 1.000 1.000 1.000 0.379 0.893 0.990 1.000 1.000 1.000 1.000 0.380 0.895 0.988 1.000 1.000 1.000 1.000 0.380 0.870 0.980 1.000 1.000 1.000 1.000 0.002 0.043 0.102 0.231 0.454 0.665 0.802 0.002 0.070 0.126 0.238 0.465 0.643 0.795 1.000 0.084 0.149 0.255 0.454 0.626 0.784 0.090 0.159 0.225 0.315 0.508 0.714 0.830 0.114 0.169 0.180 0.292 0.470 0.672 0.809 0.000 0.153 0.171 0.233 0.432 0.641 0.771 0.7 10 30 50 100 200 350 500 0.084 0.660 0.870 0.998 1.000 1.000 1.000 0.057 0.630 0.852 0.997 1.000 1.000 1.000 0.031 0.588 0.827 0.996 1.000 1.000 1.000 0.337 0.774 0.922 0.998 1.000 1.000 1.000 0.319 0.767 0.918 0.998 1.000 1.000 1.000 0.319 0.753 0.888 0.999 1.000 1.000 1.000 0.003 0.052 0.118 0.281 0.493 0.733 0.849 0.004 0.076 0.143 0.289 0.487 0.714 0.827 0.999 0.096 0.160 0.297 0.475 0.710 0.802 0.115 0.153 0.205 0.367 0.584 0.783 0.857 0.123 0.161 0.194 0.364 0.554 0.779 0.838 0.000 0.126 0.165 0.296 0.497 0.730 0.798 0.9 10 30 50 100 200 350 500 0.061 0.424 0.621 0.863 0.984 1.000 1.000 0.038 0.395 0.596 0.842 0.982 1.000 1.000 0.017 0.345 0.573 0.823 0.977 1.000 1.000 0.259 0.521 0.713 0.904 0.987 1.000 1.000 0.245 0.527 0.708 0.893 0.984 1.000 1.000 0.245 0.520 0.693 0.881 0.983 1.000 1.000 0.015 0.054 0.145 0.360 0.563 0.758 0.861 0.010 0.065 0.143 0.354 0.549 0.738 0.843 0.999 0.071 0.137 0.340 0.540 0.724 0.823 0.110 0.135 0.249 0.399 0.624 0.800 0.879 0.132 0.116 0.235 0.372 0.605 0.789 0.869 0.000 0.106 0.167 0.353 0.575 0.755 0.851 0.99 10 30 50 100 200 350 500 0.061 0.312 0.355 0.444 0.538 0.666 0.776 0.038 0.288 0.346 0.432 0.519 0.651 0.760 0.019 0.271 0.347 0.409 0.507 0.630 0.732 0.277 0.430 0.456 0.513 0.574 0.709 0.777 0.274 0.427 0.457 0.475 0.561 0.702 0.772 0.274 0.415 0.466 0.466 0.564 0.673 0.764 0.015 0.098 0.203 0.392 0.634 0.792 0.867 0.012 0.108 0.198 0.370 0.639 0.786 0.882 1.000 0.107 0.181 0.345 0.606 0.776 0.866 0.111 0.150 0.279 0.458 0.698 0.801 0.870 0.106 0.141 0.266 0.413 0.688 0.787 0.888 0.000 0.114 0.244 0.383 0.665 0.779 0.887 30 Table 11: Power of the Sup-LR test under different trimming levels at 10% significance when β1 = 1, β2 = 1.5, β3 = 2 α = 0.10 Linear AsySupLR Linear BootSup Probit AsySupLR Probit BootSupLR ρ T 0.15 0.10 0.05 0.15 0.10 0.05 0.15 0.10 0.05 0.15 0.10 0.05 0 10 30 50 100 200 350 500 0.385 0.912 0.988 1.000 1.000 1.000 1.000 0.350 0.893 0.986 1.000 1.000 1.000 1.000 0.307 0.872 0.983 1.000 1.000 1.000 1.000 0.380 0.935 0.991 1.000 1.000 1.000 1.000 0.356 0.929 0.991 1.000 1.000 1.000 1.000 0.356 0.916 0.988 1.000 1.000 1.000 1.000 0.006 0.059 0.116 0.242 0.454 0.660 0.804 0.011 0.063 0.094 0.224 0.438 0.654 0.786 0.009 0.050 0.082 0.199 0.415 0.609 0.764 0.145 0.172 0.193 0.245 0.450 0.683 0.822 0.154 0.183 0.204 0.252 0.429 0.638 0.784 0.154 0.158 0.208 0.247 0.436 0.618 0.761 0.4 10 30 50 100 200 350 500 0.358 0.858 0.980 1.000 1.000 1.000 1.000 0.338 0.837 0.974 1.000 1.000 1.000 1.000 0.303 0.807 0.967 1.000 1.000 1.000 1.000 0.379 0.893 0.990 1.000 1.000 1.000 1.000 0.380 0.895 0.988 1.000 1.000 1.000 1.000 0.380 0.870 0.980 1.000 1.000 1.000 1.000 0.009 0.064 0.134 0.253 0.488 0.701 0.810 0.015 0.067 0.115 0.218 0.464 0.679 0.793 0.012 0.055 0.102 0.181 0.422 0.653 0.768 0.107 0.159 0.199 0.259 0.448 0.687 0.817 0.115 0.166 0.193 0.259 0.440 0.665 0.810 0.115 0.169 0.192 0.260 0.438 0.652 0.757 0.7 10 30 50 100 200 350 500 0.334 0.725 0.895 0.998 1.000 1.000 1.000 0.319 0.703 0.878 0.998 1.000 1.000 1.000 0.282 0.685 0.857 0.997 1.000 1.000 1.000 0.337 0.774 0.922 0.998 1.000 1.000 1.000 0.319 0.767 0.918 0.998 1.000 1.000 1.000 0.319 0.753 0.888 0.999 1.000 1.000 1.000 0.031 0.081 0.166 0.319 0.532 0.748 0.865 0.030 0.068 0.146 0.286 0.504 0.730 0.843 0.020 0.061 0.119 0.256 0.467 0.712 0.832 0.135 0.157 0.219 0.320 0.582 0.756 0.844 0.128 0.161 0.219 0.318 0.526 0.757 0.835 0.128 0.163 0.220 0.300 0.524 0.711 0.813 0.9 10 30 50 100 200 350 500 0.262 0.480 0.668 0.875 0.984 1.000 1.000 0.236 0.471 0.646 0.860 0.982 1.000 1.000 0.206 0.450 0.622 0.833 0.978 1.000 1.000 0.259 0.521 0.713 0.904 0.987 1.000 1.000 0.245 0.527 0.708 0.893 0.984 1.000 1.000 0.245 0.520 0.693 0.881 0.983 1.000 1.000 0.030 0.126 0.223 0.438 0.612 0.792 0.873 0.023 0.115 0.201 0.409 0.614 0.790 0.868 0.017 0.095 0.176 0.376 0.600 0.763 0.864 0.119 0.166 0.271 0.443 0.637 0.801 0.888 0.136 0.171 0.262 0.441 0.612 0.804 0.875 0.136 0.162 0.244 0.426 0.607 0.766 0.858 0.99 10 30 50 100 200 350 500 0.283 0.371 0.392 0.466 0.549 0.675 0.776 0.260 0.367 0.389 0.454 0.534 0.655 0.764 0.225 0.353 0.377 0.432 0.524 0.637 0.738 0.277 0.430 0.456 0.513 0.574 0.709 0.777 0.274 0.427 0.457 0.475 0.561 0.702 0.772 0.274 0.415 0.466 0.466 0.564 0.673 0.764 0.040 0.168 0.292 0.491 0.684 0.789 0.875 0.038 0.149 0.285 0.497 0.712 0.812 0.891 0.031 0.125 0.255 0.488 0.718 0.827 0.907 0.131 0.197 0.315 0.491 0.707 0.776 0.862 0.132 0.181 0.315 0.499 0.712 0.812 0.891 0.132 0.180 0.303 0.486 0.709 0.820 0.910 31 Table 12: Power of the Sup-Wald test under different trimming levels at 10% significance when β1 = 1, β2 = 1.5, β3 = 2 α = 0.10 Linear AsySupWald Linear BootSup Probit AsySupWald Probit BootSupWald ρ T 0.15 0.10 0.05 0.15 0.10 0.05 0.15 0.10 0.05 0.15 0.10 0.05 0 10 30 50 100 200 350 500 0.552 0.935 0.991 1.000 1.000 1.000 1.000 0.543 0.926 0.991 1.000 1.000 1.000 1.000 0.509 0.912 0.986 1.000 1.000 1.000 1.000 0.380 0.935 0.991 1.000 1.000 1.000 1.000 0.356 0.929 0.991 1.000 1.000 1.000 1.000 0.356 0.916 0.988 1.000 1.000 1.000 1.000 0.000 0.006 0.017 0.070 0.308 0.568 0.733 0.000 0.006 0.017 0.076 0.297 0.555 0.714 0.000 0.006 0.018 0.079 0.282 0.514 0.691 0.101 0.113 0.223 0.214 0.444 0.711 0.828 0.096 0.122 0.207 0.202 0.424 0.646 0.770 0.096 0.136 0.199 0.188 0.392 0.595 0.701 0.4 10 30 50 100 200 350 500 0.535 0.896 0.987 1.000 1.000 1.000 1.000 0.532 0.888 0.980 1.000 1.000 1.000 1.000 0.501 0.867 0.974 1.000 1.000 1.000 1.000 0.379 0.893 0.990 1.000 1.000 1.000 1.000 0.380 0.895 0.988 1.000 1.000 1.000 1.000 0.380 0.870 0.980 1.000 1.000 1.000 1.000 0.000 0.006 0.018 0.094 0.329 0.590 0.756 0.000 0.006 0.020 0.098 0.310 0.568 0.733 0.000 0.006 0.019 0.097 0.301 0.539 0.716 0.067 0.149 0.187 0.275 0.458 0.698 0.827 0.081 0.142 0.185 0.253 0.436 0.647 0.802 0.081 0.150 0.161 0.219 0.397 0.597 0.788 0.7 10 30 50 100 200 350 500 0.491 0.774 0.921 0.998 1.000 1.000 1.000 0.480 0.764 0.901 0.998 1.000 1.000 1.000 0.440 0.739 0.884 0.999 1.000 1.000 1.000 0.337 0.774 0.922 0.998 1.000 1.000 1.000 0.319 0.767 0.918 0.998 1.000 1.000 1.000 0.319 0.753 0.888 0.999 1.000 1.000 1.000 0.000 0.007 0.018 0.125 0.388 0.655 0.810 0.000 0.007 0.021 0.118 0.366 0.644 0.783 0.000 0.007 0.016 0.107 0.352 0.617 0.766 0.090 0.160 0.193 0.349 0.573 0.778 0.866 0.106 0.146 0.202 0.332 0.556 0.769 0.848 0.106 0.145 0.185 0.297 0.537 0.753 0.816 0.9 10 30 50 100 200 350 500 0.411 0.538 0.704 0.878 0.984 1.000 1.000 0.391 0.529 0.685 0.873 0.982 1.000 1.000 0.364 0.509 0.670 0.853 0.978 1.000 1.000 0.259 0.521 0.713 0.904 0.987 1.000 1.000 0.245 0.527 0.708 0.893 0.984 1.000 1.000 0.245 0.520 0.693 0.881 0.983 1.000 1.000 0.000 0.004 0.032 0.215 0.478 0.724 0.839 0.000 0.003 0.035 0.210 0.446 0.699 0.827 0.000 0.002 0.030 0.191 0.426 0.673 0.809 0.094 0.146 0.250 0.399 0.628 0.796 0.884 0.111 0.133 0.238 0.384 0.623 0.790 0.883 0.111 0.129 0.217 0.366 0.611 0.769 0.880 0.99 10 30 50 100 200 350 500 0.435 0.424 0.422 0.482 0.553 0.680 0.777 0.418 0.413 0.423 0.473 0.540 0.665 0.767 0.393 0.419 0.429 0.451 0.532 0.645 0.740 0.277 0.430 0.456 0.513 0.574 0.709 0.777 0.274 0.427 0.457 0.475 0.561 0.702 0.772 0.274 0.415 0.466 0.466 0.564 0.673 0.764 0.001 0.015 0.090 0.302 0.595 0.775 0.857 0.001 0.011 0.070 0.281 0.569 0.766 0.864 0.001 0.009 0.056 0.235 0.531 0.738 0.849 0.101 0.164 0.270 0.444 0.700 0.794 0.865 0.086 0.161 0.256 0.433 0.702 0.809 0.889 0.086 0.162 0.250 0.440 0.686 0.797 0.896 32 B.3 β1 = 1, β2 = 1.5, β3 = 1 Table 13: Power of the Sup-LM test under different trimming levels at 10% significance when β1 = 1, β2 = 1.5, β3 = 1 α = 0.10 Linear AsySupLM Linear BootSup Probit AsySupLM Probit BootSupLM ρ T 0.15 0.10 0.05 0.15 0.10 0.05 0.15 0.10 0.05 0.15 0.10 0.05 0 10 30 50 100 200 350 500 0.017 0.209 0.392 0.813 0.991 1.000 1.000 0.010 0.188 0.345 0.775 0.988 1.000 1.000 0.005 0.152 0.300 0.727 0.982 1.000 1.000 0.119 0.333 0.541 0.859 0.993 1.000 1.000 0.117 0.330 0.520 0.842 0.991 1.000 1.000 0.117 0.305 0.477 0.817 0.988 1.000 1.000 0.015 0.063 0.096 0.161 0.239 0.298 0.370 0.012 0.077 0.130 0.190 0.248 0.314 0.376 1.000 0.116 0.161 0.224 0.268 0.335 0.389 0.178 0.173 0.223 0.242 0.306 0.358 0.430 0.193 0.158 0.215 0.226 0.313 0.377 0.433 0.000 0.147 0.169 0.215 0.257 0.352 0.387 0.4 10 30 50 100 200 350 500 0.013 0.188 0.361 0.707 0.982 1.000 1.000 0.004 0.169 0.319 0.672 0.975 1.000 1.000 0.002 0.138 0.264 0.612 0.957 0.999 1.000 0.140 0.342 0.520 0.800 0.985 1.000 1.000 0.148 0.305 0.477 0.763 0.984 1.000 1.000 0.148 0.273 0.440 0.741 0.976 1.000 1.000 0.017 0.062 0.100 0.164 0.231 0.330 0.383 0.015 0.085 0.128 0.197 0.240 0.337 0.406 1.000 0.107 0.156 0.242 0.282 0.349 0.420 0.145 0.195 0.200 0.239 0.286 0.374 0.454 0.142 0.180 0.183 0.241 0.258 0.388 0.468 0.000 0.134 0.161 0.242 0.252 0.377 0.442 0.7 10 30 50 100 200 350 500 0.024 0.140 0.245 0.494 0.867 0.989 1.000 0.016 0.120 0.217 0.457 0.836 0.984 1.000 0.004 0.094 0.193 0.416 0.803 0.969 1.000 0.157 0.227 0.310 0.601 0.908 0.989 1.000 0.142 0.219 0.317 0.570 0.892 0.986 1.000 0.142 0.214 0.298 0.543 0.884 0.985 1.000 0.021 0.090 0.127 0.208 0.280 0.417 0.457 0.017 0.104 0.164 0.226 0.298 0.438 0.471 0.999 0.133 0.182 0.242 0.331 0.462 0.471 0.173 0.231 0.230 0.297 0.338 0.442 0.502 0.163 0.217 0.218 0.285 0.351 0.449 0.514 0.000 0.194 0.222 0.259 0.354 0.444 0.520 0.9 10 30 50 100 200 350 500 0.018 0.117 0.156 0.263 0.469 0.709 0.892 0.011 0.102 0.142 0.254 0.449 0.670 0.864 0.004 0.091 0.131 0.221 0.428 0.621 0.820 0.120 0.209 0.253 0.342 0.546 0.770 0.923 0.114 0.204 0.230 0.314 0.517 0.742 0.905 0.114 0.205 0.223 0.305 0.489 0.714 0.870 0.039 0.124 0.212 0.335 0.446 0.534 0.629 0.031 0.139 0.224 0.347 0.447 0.550 0.634 1.000 0.145 0.237 0.350 0.456 0.552 0.643 0.190 0.229 0.291 0.409 0.483 0.601 0.660 0.183 0.201 0.292 0.401 0.464 0.573 0.644 0.000 0.183 0.245 0.354 0.456 0.543 0.633 0.99 10 30 50 100 200 350 500 0.029 0.141 0.131 0.159 0.182 0.222 0.267 0.015 0.127 0.137 0.154 0.189 0.214 0.270 0.007 0.126 0.161 0.160 0.202 0.219 0.269 0.156 0.233 0.198 0.214 0.215 0.265 0.311 0.153 0.241 0.207 0.205 0.220 0.261 0.290 0.153 0.252 0.245 0.212 0.235 0.262 0.282 0.054 0.179 0.274 0.428 0.591 0.703 0.771 0.050 0.173 0.277 0.412 0.590 0.693 0.781 1.000 0.186 0.271 0.406 0.577 0.688 0.777 0.207 0.283 0.362 0.454 0.597 0.715 0.776 0.193 0.265 0.332 0.435 0.601 0.711 0.787 0.000 0.241 0.327 0.411 0.595 0.704 0.770 33 Table 14: Power of the Sup-LR test under different trimming levels at 10% significance when β1 = 1, β2 = 1.5, β3 = 1 α = 0.10 Linear AsySupLR Linear BootSup Probit AsySupLR Probit BootSupLR ρ T 0.15 0.10 0.05 0.15 0.10 0.05 0.15 0.10 0.05 0.15 0.10 0.05 0 10 30 50 100 200 350 500 0.121 0.277 0.448 0.837 0.992 1.000 1.000 0.117 0.266 0.409 0.802 0.988 1.000 1.000 0.093 0.231 0.367 0.758 0.982 1.000 1.000 0.119 0.333 0.541 0.859 0.993 1.000 1.000 0.117 0.330 0.520 0.842 0.991 1.000 1.000 0.117 0.305 0.477 0.817 0.988 1.000 1.000 0.014 0.059 0.082 0.120 0.142 0.202 0.273 0.014 0.056 0.065 0.112 0.141 0.187 0.252 0.011 0.053 0.063 0.098 0.118 0.188 0.241 0.169 0.111 0.133 0.136 0.155 0.218 0.297 0.171 0.120 0.141 0.142 0.136 0.220 0.272 0.171 0.124 0.156 0.137 0.137 0.196 0.255 0.4 10 30 50 100 200 350 500 0.133 0.256 0.411 0.733 0.984 1.000 1.000 0.115 0.245 0.385 0.695 0.977 1.000 1.000 0.095 0.202 0.334 0.649 0.968 1.000 1.000 0.140 0.342 0.520 0.800 0.985 1.000 1.000 0.148 0.305 0.477 0.763 0.984 1.000 1.000 0.148 0.273 0.440 0.741 0.976 1.000 1.000 0.020 0.071 0.074 0.122 0.165 0.234 0.270 0.023 0.071 0.069 0.113 0.158 0.223 0.263 0.016 0.066 0.064 0.095 0.147 0.212 0.253 0.140 0.128 0.109 0.124 0.150 0.265 0.304 0.144 0.128 0.117 0.129 0.155 0.237 0.288 0.144 0.124 0.120 0.141 0.162 0.214 0.278 0.7 10 30 50 100 200 350 500 0.157 0.200 0.279 0.517 0.877 0.990 1.000 0.143 0.178 0.268 0.489 0.843 0.985 1.000 0.119 0.159 0.235 0.446 0.813 0.972 1.000 0.157 0.227 0.310 0.601 0.908 0.989 1.000 0.142 0.219 0.317 0.570 0.892 0.986 1.000 0.142 0.214 0.298 0.543 0.884 0.985 1.000 0.042 0.108 0.114 0.159 0.214 0.339 0.351 0.037 0.096 0.101 0.146 0.218 0.330 0.337 0.029 0.081 0.103 0.139 0.196 0.315 0.322 0.151 0.170 0.144 0.152 0.218 0.353 0.370 0.127 0.177 0.142 0.157 0.219 0.322 0.361 0.127 0.185 0.152 0.159 0.223 0.315 0.326 0.9 10 30 50 100 200 350 500 0.123 0.166 0.183 0.282 0.483 0.715 0.897 0.110 0.151 0.182 0.275 0.457 0.681 0.868 0.094 0.136 0.167 0.248 0.434 0.627 0.829 0.120 0.209 0.253 0.342 0.546 0.770 0.923 0.114 0.204 0.230 0.314 0.517 0.742 0.905 0.114 0.205 0.223 0.305 0.489 0.714 0.870 0.064 0.153 0.225 0.320 0.414 0.485 0.578 0.052 0.153 0.209 0.320 0.415 0.482 0.579 0.045 0.129 0.193 0.291 0.407 0.497 0.575 0.169 0.199 0.221 0.327 0.406 0.501 0.590 0.162 0.185 0.222 0.322 0.406 0.489 0.591 0.162 0.185 0.204 0.299 0.380 0.488 0.568 0.99 10 30 50 100 200 350 500 0.159 0.187 0.161 0.177 0.192 0.229 0.272 0.146 0.176 0.155 0.167 0.193 0.219 0.273 0.121 0.177 0.188 0.172 0.208 0.225 0.272 0.156 0.233 0.198 0.214 0.215 0.265 0.311 0.153 0.241 0.207 0.205 0.220 0.261 0.290 0.153 0.252 0.245 0.212 0.235 0.262 0.282 0.094 0.245 0.366 0.494 0.626 0.715 0.769 0.085 0.218 0.360 0.511 0.649 0.729 0.796 0.069 0.191 0.326 0.497 0.667 0.737 0.813 0.196 0.252 0.338 0.458 0.621 0.715 0.766 0.177 0.254 0.338 0.439 0.632 0.729 0.788 0.177 0.256 0.323 0.424 0.639 0.736 0.795 34 Table 15: Power of the Sup-Wald test under different trimming levels at 10% significance when β1 = 1, β2 = 1.5, β3 = 1 α = 0.10 Linear AsySupWald Linear BootSup Probit AsySupWald Probit BootSupWald ρ T 0.15 0.10 0.05 0.15 0.10 0.05 0.15 0.10 0.05 0.15 0.10 0.05 0 10 30 50 100 200 350 500 0.236 0.334 0.499 0.848 0.993 1.000 1.000 0.234 0.316 0.469 0.829 0.989 1.000 1.000 0.209 0.301 0.426 0.787 0.984 1.000 1.000 0.119 0.333 0.541 0.859 0.993 1.000 1.000 0.117 0.330 0.520 0.842 0.991 1.000 1.000 0.117 0.305 0.477 0.817 0.988 1.000 1.000 0.000 0.005 0.008 0.048 0.120 0.209 0.291 0.000 0.006 0.010 0.049 0.122 0.206 0.284 0.000 0.006 0.013 0.053 0.122 0.202 0.276 0.124 0.170 0.195 0.244 0.263 0.341 0.398 0.127 0.172 0.178 0.223 0.279 0.310 0.405 0.127 0.164 0.163 0.182 0.233 0.296 0.371 0.4 10 30 50 100 200 350 500 0.239 0.326 0.458 0.761 0.984 1.000 1.000 0.238 0.292 0.429 0.724 0.979 1.000 1.000 0.218 0.276 0.396 0.689 0.973 1.000 1.000 0.140 0.342 0.520 0.800 0.985 1.000 1.000 0.148 0.305 0.477 0.763 0.984 1.000 1.000 0.148 0.273 0.440 0.741 0.976 1.000 1.000 0.000 0.004 0.021 0.046 0.134 0.237 0.302 0.000 0.003 0.019 0.049 0.128 0.239 0.302 0.000 0.004 0.020 0.047 0.129 0.220 0.295 0.101 0.150 0.186 0.207 0.243 0.358 0.415 0.110 0.172 0.180 0.220 0.232 0.353 0.454 0.110 0.171 0.179 0.211 0.230 0.336 0.413 0.7 10 30 50 100 200 350 500 0.271 0.254 0.322 0.547 0.882 0.990 1.000 0.262 0.238 0.315 0.511 0.859 0.986 1.000 0.240 0.232 0.290 0.475 0.825 0.974 1.000 0.157 0.227 0.310 0.601 0.908 0.989 1.000 0.142 0.219 0.317 0.570 0.892 0.986 1.000 0.142 0.214 0.298 0.543 0.884 0.985 1.000 0.000 0.009 0.017 0.088 0.192 0.347 0.382 0.000 0.008 0.017 0.091 0.178 0.330 0.377 0.000 0.009 0.016 0.086 0.172 0.333 0.360 0.103 0.192 0.216 0.292 0.316 0.429 0.478 0.108 0.191 0.222 0.281 0.331 0.428 0.509 0.108 0.186 0.246 0.271 0.350 0.445 0.490 0.9 10 30 50 100 200 350 500 0.261 0.199 0.222 0.300 0.496 0.723 0.898 0.247 0.194 0.207 0.290 0.469 0.692 0.873 0.210 0.190 0.207 0.278 0.449 0.638 0.836 0.120 0.209 0.253 0.342 0.546 0.770 0.923 0.114 0.204 0.230 0.314 0.517 0.742 0.905 0.114 0.205 0.223 0.305 0.489 0.714 0.870 0.000 0.015 0.076 0.223 0.375 0.480 0.585 0.000 0.013 0.062 0.209 0.367 0.476 0.576 0.000 0.010 0.052 0.185 0.347 0.460 0.570 0.128 0.244 0.306 0.404 0.457 0.563 0.643 0.128 0.223 0.309 0.402 0.475 0.549 0.635 0.128 0.218 0.301 0.379 0.484 0.567 0.650 0.99 10 30 50 100 200 350 500 0.273 0.236 0.182 0.187 0.200 0.231 0.275 0.263 0.234 0.186 0.187 0.197 0.225 0.276 0.231 0.232 0.213 0.186 0.218 0.229 0.279 0.156 0.233 0.198 0.214 0.215 0.265 0.311 0.153 0.241 0.207 0.205 0.220 0.261 0.290 0.153 0.252 0.245 0.212 0.235 0.262 0.282 0.001 0.026 0.136 0.358 0.565 0.694 0.760 0.001 0.020 0.114 0.335 0.551 0.684 0.775 0.001 0.011 0.096 0.291 0.517 0.646 0.752 0.121 0.269 0.353 0.431 0.596 0.717 0.768 0.107 0.266 0.346 0.440 0.606 0.716 0.793 0.107 0.266 0.347 0.446 0.610 0.717 0.791 35 References Albanese, M. and Knott, M. (1994). Bootstrapping latent variable models for binary response. The British Journal of Mathematical and Statistical Psychology, 47:235–246. Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica, 59(3):817–58. Andrews, D. W. K. (1993). Tests for parameter instability and structural change with unknown change point. Econometrica, 61(4):821–56. Andrews, D. W. K. (2003). Tests for parameter instability and structural change with unknown change point: A corrigendum. Econometrica, 71(1):395–397. Andrews, D. W. K. and Ploberger, W. (1994). Optimal tests when a nuisance parameter is present only under the alternative. Econometrica, 62(6):1383– 1414. Bai, J. (1999). Likelihood ratio tests for multiple structural changes. Journal of Econometrics, 91(2):299–323. Bai, J. and Perron, P. (1998). Estimating and testing linear models with multiple structural changes. Econometrica, 66(1):47–78. Bai, J. and Perron, P. (2003). Computation and analysis of multiple structural change models. Journal of Applied Econometrics, 18(1):1–22. Bai, J. and Perron, P. (2004). Multiple structural change models: a simulation analysis. Unpublished manuscript. Breusch, T. S. (1979). Conflict among criteria for testing hypotheses: Extensions and comments. Econometrica, 47(1):203–207. Chauvet, M. and Potter, S. (2005). Forecasting recessions using the yield curve. Journal of Forecasting, 24(2):77–103. Chauvet, M. and Potter, S. (2010). Business cycle monitoring with structural changes. International Journal of Forecasting, 26(4):777–793. Chow, G. (1960). Tests of equality between sets of coefficients in two linear regressions. Econometrica, 28:591–605. 36 Diebold, F. X. and Chen, C. (1996). Testing structural stability with endogenous breakpoint a size comparison of analytic and bootstrap procedures. Journal of Econometrics, 70(1):221–241. Engle, R. F. (1984). Wald, likelihood ratio, and lagrange multiplier tests in econometrics. In Grilichesa, Z. and Intriligator, M. D., editors, Handbook of Econometrics, volume 2 of Handbook of Econometrics, chapter 13, pages 775–826. Elsevier. Estrella, A. (2003). Critical values and p values of bessel process distributions: Computation and application to structural break tests. Econometric Theory, 19(6):1128–1143. Estrella, A. and Rodrigues, A. P. (1998). Consistent covariance matrix estimation in probit models with autocorrelated errors. Staff Reports 39, Federal Reserve Bank of New York. Estrella, A., Rodrigues, A. P., and Schich, S. (2003). How stable is the predictive power of the yield curve? evidence from germany and the united states. The Review of Economics and Statistics, 85(3):629–644. Hansen, B. E. (1997). Approximate asymptotic p values for structural-change tests. Journal of Business & Economic Statistics, 15:60–67. Hansen, B. E. (2000). Testing for structural change in conditional models. Journal of Econometrics, 97(1):93–115. Harding, D. and Pagan, A. R. (2011). An econometric analysis of some models for constructed binary time series. Journal of Business & Economic Statistics, 29(1):86–95. Hoyo, J., Llorente, J., and Rivero, C. (2005). Testing for breaks in non-linear and dynamic models. In Econometric Study Group. Kauppi, H. (2010). Yield-curve based probability forecasts of u.s. recessions: Stability and dynamics. Discussion Papers 57, Aboa Centre for Economics. Kauppi, H. and Saikkonen, P. (2008). Predicting u.s. recessions with dynamic binary response models. The Review of Economics and Statistics, 90(4):777–791. Koop, G. and Potter, S. (2000). Nonlinearity, structural breaks or outliers in economic time series? In William Barnett, e. a., editor, Nonlinear Econometric Modeling in Time Series Analysis, pages 61–78. Cambridge University Press. 37 MacKinnon, J. G. (1996). Numerical distribution functions for unit root and cointegration tests. Journal of Applied Econometrics, 11(6):601–18. McConnell, M. M. and Perez-Quiros, G. (2000). Output fluctuations in the united states: What has changed since the early 1980’s? American Economic Review, 90(5):1464–1476. Newey, W. K. and West, K. D. (1987). A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica, 55(3):703–08. Pagan, A. and Harding, D. (2011). Econometric analysis and prediction of recurrent events. NCER Working Paper Series 75, National Centre for Econometric Research. Prodan, R. (2008). Potential pitfalls in determining multiple structural changes with an application to purchasing power parity. Journal of Business & Economic Statistics, 26:50–65. Quandt, R. (1958). The estimation of the parameters of a linear regression system obeying two separate regimes. Journal of the American Statistical Association, 53:873–880. Quandt, R. E. (1960). Tests of the hypothesis that a linear regression system obeys two separate regimes. Journal of the American Statistical Association, 55(290):324–330. Yang, J. (2001). Structural change tests under regression misspecifications. Economics Letters, 70(3):311–317. 38
© Copyright 2026 Paperzz