RANDOM WALKS ON A COMPLETE GRAPH AND A MODEL FOR INFECTION T. C. Dorlas (Dublin Institute for Advanced Studies) N. Datta (Cambridge) 1 We consider two walks on a complete graph KN of N sites in continuous time, each with unit jump rate: P (ξ(t + δt) = x0 | ξ(t) = x) ½ = 1 N δt 1− N −1 N δt if x0 6= x . if x0 = x. During time t we have 0 −t Pt (ξ : x → x ) = e δ 2 x,x0 1 + (1 − e−t ). N Now consider two independent such walks ξ0 and ξ1 and define µ g1 (t) = P̄t ξ0 : x → x ξ1 : x0 → · X := µ P̄t x00 6=x ¶ ξ0 : x → x ξ1 : x0 → x00 ¶ and µ g2 (t) = P̄t := 0 ξ0 : x → x ξ1 : x 0 → · X µ P̄t x00 6=x0 ¶ 0 ξ0 : x → x ξ1 : x0 → x00 ¶ . Here P̄t (A) indicates the probability of the event A and the walks do not coincide during time t. 3 We can compute g1 (t) and g2 (t) as follows: Let t0 denote the last time at which ξ0 jumps. Then µ g1 (t) = P̄t + ξ0 : x → x constant ξ1 : x0 → · Z X x00 6=x x000 6=x,x00 t 0 dt0 −(t−t0 ) e N µ × P̄ t0 ¶ 000 ξ0 : x → x ξ1 : x0 → x00 ¶ Here we use the fact that µ P̄t ξ0 : x → x constant ξ1 : x 0 → · 4 ¶ = e−t . . This follows from µ P̄δt ξ0 : x → x constant ξ1 : x0 → · ¶ µ ¶ N −1 = 1− δt N ·µ × ¶ ¸ N −1 N −2 1− δt + δt N N ∼ 1 − δt. 5 We now write X µ X P̄t x00 6=x x000 6=x,x00 µ = P̄t − 000 ξ0 : x → x ξ1 : x0 → x00 ξ0 : x → · ξ1 : x0 → · X x00 6=x µ P̄t ¶ ¶ µ − P̄t ξ0 : x → x ξ1 : x0 → x00 ξ0 : x → · ξ1 : x0 → x ¶ ¶ = e−(2/N )t − g2 (t) − g1 (t). 2 Here the expression e− N t is derived in the same way as above. 6 Analogous to the equation for g1 (t) we have g2 (t) = Z X t 0 x00 6=x 000 x 6=x,x00 dt0 −(t−t0 ) e N µ × P̄t0 ξ0 : x → x000 ξ1 : x0 → x00 ¶ = g1 (t) − e−t . Inserting this into the equation for g1 (t) we get Z g1 (t) = e−t + t 0 h 2 0 −N t × e dt0 −(t−t0 ) e N 0 i + e−t − 2g1 (t0 ) . 7 With the obvious initial condition g1 (0) = 1 the solution is g1 (t) = 2 N − 2 − N +2 t 1 1 e N + e− N t + e−t . 2N N 2 Hence, g2 (t) = 2 N − 2 − N +2 t 1 1 e N + e− N t − e−t . 2N N 2 8 We also need an equation for µ f (t) = P̄t 00 ξ0 : x → x ξ1 : x 0 → · ¶ , where x00 6= x, x0 . This can be derived as follows: µ f (t) = P̄t 00 x→x x0 → · ¶ 1 h ³x→·´ = P̄t x0 → · N −2 µ − P̄t 0 x→x x0 → · ¶ − P̄t ³ x → x ´¸ x0 → · i 1 h −2t = e N − g2 (t) − g1 (t) N −2 = 1 −2t e N (1 − e−t ). N 9 We now want to compute the probability distribution of the total time two walks starting and ending at fixed points x0 6= x1 , coincide over a time interval [0, T ]. First of all, there is a non-zero probability p0 (t) that the two walks do not meet at all. This can be computed in the same way as above: We can write ³ x→x ´ P̄t+δt x0 → x0 ³ x→x ´ = P̄t Pδt (ξ0 , ξ1 constant)+ x0 → x0 h + 2 P̄t ³x → x´ ³ x → x ´i δt . − P̄t x0 → · x0 → x0 N This yields p00 (t) 2 = −2p0 (t) + g1 (t) N 10 with solution i 1 h − N +2 t p0 (t) = e N + e−t + (N − 2)e−2t N h 2 i 1 + e− N t − e−2t . N (N − 1) 11 Now consider an intermediate interval, say (t2k−1 , t2k ) over which the walks do not coincide. Suppose first that the common points before and after this interval are the same. There are then two possibilities: t t t 2k 2k-1 t 2k 2k-1 (b) (a) Either the first walk to jump away is the last to return to the initial point, or it returns to the initial point before the other walk. The two possibilities have transition probabilities g1 (t) and g2 (t) where t = t2k − t2k−1 . 12 The total transition probability is thus η (=) (t) = g1 (t) + g2 (t) N − 2 − N +2 t 2 −2t N = + e N . e N N Similarly, the transition probability between different levels is ¶ µ 2 N − 2 N − 1 −t −N (6=) − e e t. η (t) = 2 N N (This involves the function f (t).) 13 We now get recursive equations for the probability densities for the interval (t1 , t2k+1 ) starting and ending with coinciding walks, (=) (6=) ρk (T 0 , τ ) and ρk (T 0 , τ ) corresponding to the initial and final point of coincidence being equal or unequal (T 0 = t2k+1 − t1 ): (=) ρk (T 0 , τ ) = ×e 2 N2 Z τ Z dτ 0 T 0 −τ +τ 0 τ0 0 dt2k−1 −1 −2 NN (T 0 −t2k ) ½ (=) × (N − 1)ρk−1 (t2k−1 , τ 0 ) × η (=) (T 0 − τ + τ 0 − t2k−1 ) (6=) + (N − 1)ρk−1 (t2k−1 , τ 0 ) ¾ × η (6=) (T 0 − τ + τ 0 − t2k−1 ) 14 (6=) and a similar equation for ρk (T 0 , τ ). The solutions are (=) ρk (T 0 , τ ) 2k (N − 1) −2 N −1 τ N = e 2k+1 N k (T 0 − τ )k−1 k! (k − 1)! 2 −N (T 0 −τ ) τ ×e £ k ¤ k−1 k −T 0 +τ × 2 (N − 1) + (N − 2) e and (6=) ρk (T 0 , τ ) ×e = 2k N 2k+1 e −1 τ −2 NN (T 0 − τ )k−1 k! (k − 1)! 2 −N (T 0 −τ ) τ k £ k ¤ k k −T 0 +τ × 2 (N − 1) − (N − 2) e . 15 Finally, adding on the initial and final intervals of non-coincidence, we get the following expression for the probability density of the total time of coincidence τ for walks starting and ending at two different points in case there are k intervals of coincidence: pk (τ ) = 2k N −2 e 2k+1 2 −N (T −τ ) ×e N −1 N τ τ k−1 (T − τ )k (k − 1)! k! ¤ £ k k−1 k −T +τ . × 2 (N − 1) + (N − 2) e 16 Now suppose that ξ0 is carrying an infection, and that the probability of transfer to ξ1 upon contact is given by q(τ ) = 1 − e−γτ . The probability of infection in a time interval [0, T ] given that the walkers return home is then given by P∞ R T Pinf = q(τ )pk (τ )dτ , KN (T ) k=1 0 where KN (T ) is the probability of both walkers returning home: ¤ 1 £ −T 2 KN (T ) = 2 1 + (N − 1)e . N This can be calculated exactly. The result 17 is: IT (γ) = ∞ Z X k=1 T q(τ )pk (τ )dτ 0 1 N − 2 −T 2N − 1 −2T = 2+ e + 2 e N N2 N (N − 1) − I1 − I2 − I3 − I4 , where 2 + γ − N4 1 1 + q I1 = 2N (N − 1) (2 + γ)2 − N8 γ · µ 1 × exp − 2+γ 2 r − ¶ ¸ 8 2 (2 + γ) − γ T , N 18 2 + γ − N4 1 1 − q I2 = 2N (N − 1) (2 + γ)2 − N8 γ µ 1 × exp − 2+γ 2 · r + ¶ ¸ 8 (2 + γ)2 − γ T , N 1 + γ − N4 1 I3 = 1+ q 2N (1 + γ)2 − N8 γ · µ 1 × exp − 3+γ 2 r − ¶ ¸ 8 2 (1 + γ) − γ T , N 19 1 + γ − N4 1 I4 = 1− q 2N (1 + γ)2 − N8 γ µ 1 × exp − 3+γ 2 · r + ¶ ¸ 8 (1 + γ)2 − γ T . N 20 Result: 1 Pinf 0.8 0.6 0.4 0.2 0 10 5 15 20 T 21 At small values of T : P inf 0.3 0.2 0.1 0 1 2 3 4 5 T 22 Recent research: transition probability for 3 or more mutually avoiding walks on a complete graph. For two walks we have: 2 1 − N +2 t 1 −N t p̄2 (t) = e + e N N (N − 1) N 1 −t N 2 − 3N + 1 −2t + e + e . N N (N − 1) (This is p0 (t).) 23 For 3 walks the result is: 6 1 1 −2t −N p̄3 (t) = e + e t 2N N (N − 1)(N − 2) + N +6 1 e− N t N (N − 2) +2 N −3 −2 NN t + e 2(N − 1)(N − 2) + N +3 2N +3 2 1 e− N t + e− N t N (N − 2) N N −3 − 2NN+1 t e + (N − 1)(N − 2) N 3 − 6N 2 + 8N − 1 −3t e . + N (N − 1)(N − 2) 24
© Copyright 2026 Paperzz