Photonic Crystals: Periodic Surprises in Electromagnetism Steven G. Johnson MIT A “Defective” Lecture cavity waveguide The Story So Far… a Waves in periodic media can have: • propagation with no scattering (conserved k) • photonic band gaps (with proper e function) G are Qraphics uickTim needed e™ decom toand see pressor athis picture. 1 Eigenproblem gives simple insight: band diagram 0.9 0.8 0.7 Bloch form: H e i(k x t) Hk (x ) 2 1 n (k ) ( ik ) ( ik ) H Hk k e c ˆ k 0.6 0.5 0.4 0.3 Photonic BandGap 0.2 TMbands 0.1 0 Hermitian –> complete, orthogonal, variational theorem, etc. k are G Qraphics uickTim needed decom e™ toand see pressor athis picture. Properties of Bulk Crystals by Bloch’s theorem conserved frequency band diagram (dispersion relation) photonic band gap synthetic medium for propagation conserved wavevector k (cartoon) backwards slope: negative refraction d/dk 0: slow light (e.g. DFB lasers) strong curvature: super-prisms, … (+ negative refraction) Applications of Bulk Crystals using near-band-edge effects Zero group-velocity d/dk: distributed feedback (DFB) lasers divergent dispersion (i.e. curvature): Superprisms [Kosaka, PRB 58, R10096 (1998).] super-lens negative group-velocity or negative curvature (“eff. mass”): V eselag o (1 9 6 8) obje ct im ag e negat ive ref ract ion me diu m Negative refraction, Super-lensing [ C. Luo et al., Appl. Phys. Lett. 81, 2352 (2002) ] sourc e im a g e • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Cavity Modes • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Help! • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Cavity Modes • • • • • • • • • • • • • • • • • • finite region –> discrete • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Cavity Modes: Smaller Change • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Cavity Modes: Smaller Change are G Qraphics uickTim needed decom e™ toand see pressor athis picture. Bulk Crystal Band Diagram 0.6 L frequency (c/a) 0.5 0.4 Photonic Band Gap 0.3 0.2 0.1 0 G X M M k G X G Cavity Modes: Smaller Change are G Qraphics uickTim needed decom e™ toand see pressor athis picture. Defect Crystal Band Diagram 0.6 J J J J frequency (c/a) 0.5 L Defect bands are shifted up (less e) with discrete k # ~ L 2 (k ~ 2 / ) 0.4 JJ J J JJJJJ ∆k ~ π / L Photonic Band Gap 0.3 escapes: J 0.2 J J J 0.1 J JJJJJJJ J J J J J JJJ JJ JJJJJJJJ J J JJJJ J JJ J k not conserved at boundary, so not confined outside gap J 0J G confined modes J J J J J J X M M k G X G Single-Mode Cavity are G Qraphics uickTim needed decom e™ toand see pressor athis picture. Bulk Crystal Band Diagram 0.6 A point defect can push up a single mode from the band edge field decay ~ 0 frequency (c/a) 0.5 0.4 Photonic Band Gap 0.3 0 0.2 0.1 0 G X M curvature G M k G X (k not conserved) “Single”-Mode Cavity are G Qraphics uickTim needed decom e™ toand see pressor athis picture. Bulk Crystal Band Diagram 0.6 A point defect can pull down a “single” mode frequency (c/a) 0.5 …here, doubly-degenerate (two states at same ) 0.4 Photonic Band Gap 0.3 0.2 0.1 0 G X M X k G G M X (k not conserved) Tunable Cavity Modes 0.5 air b ands frequency (c/a) Air Defect Dielect ric Defect 0.4 0.3 dielect ric b ands 0.2 0 0.1 0.2 0.3 0.4 Radius of Defect (r/ a) Ez: monopole dipole Tunable Cavity Modes band #1 at M band #2 at X’s multiply by exponential decay Ez: monopole dipole are G Qraphics uickTim needed decom e™ toand see pressor athis picture. Defect Flavors are G Qraphics uickTim needed decom e™ to and see pressor athis picture. G are Qraphics uickTim needed e™ decom to and see pressor athis picture. a Projected Band Diagrams M k conserved k! X G conserved So, plot vs. kx only…project Brillouin zone onto G–X: gives continuum of bulk states + discrete guided band(s) not conserved 1d periodicity Air-waveguide Band Diagram G are Qraphics uickTim needed decom e™ toand see pressor athis picture. 0.5 0.45 J 0.4 J ban d ga p J 0.35 frequency (c/a) 0.3 0.25 0.2 0.15 J J J J J J st a t es of the bulk cry s t a l 0.1 0.05 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 wavenumber k (2š/a) any state in the gap cannot couple to bulk crystal –> localized (Waveguides don’t really need a complete gap) Fabry-Perot waveguide: We’ll exploit this later, with photonic-crystal fiber… So What? Review: Why no scattering? forbidden by Bloch (k conserved) forbidden by gap (except for finite-crystal tunneling) Benefits of a complete gap… broken symmetry –> reflections only effectively one-dimensional Lossless Bends [ A. Mekis et al., Phys. Rev. Lett. 77, 3787 (1996) ] symmetry + single-mode + “1d” = resonances of 100% transmission Waveguides + Cavities = Devices “tunneling” Ugh, must we simulate this to get the basic behavior? No! Use “coupling-of-modes-in-time” (coupled-mode theory)… [H. Haus, Waves and Fields in Optoelectronics] “Coupling-of-Modes-in-Time” (a form of coupled-mode theory) [H. Haus, Waves and Fields in Optoelectronics] s1+ s1– input a s2– resonant cavity frequency 0, lifetime t da 2 2 i 0 a a s1 dt t t s1 s1 2 t a, s2 2 t a output |s|2 = flux |a|2 = energy assumes only: • exponential decay (strong confinement) • conservation of energy • time-reversal symmetry “Coupling-of-Modes-in-Time” (a form of coupled-mode theory) [H. Haus, Waves and Fields in Optoelectronics] input s1+ s1– a s2– resonant cavity frequency 0, lifetime t 1 transmission T = | s2– | / | s1+ | 2 2 output |s|2 = flux |a|2 = energy T = Lorentzian filter 1 2 Q 0t FWHM 0 4 2 t 2 4 0 2 t …quality factor Q A Menagerie of Devices l 1.55 microns Wide-angle Splitters [ S. Fan et al., J. Opt. Soc. Am. B 18, 162 (2001) ] Waveguide Crossings [ S. G. Johnson et al., Opt. Lett. 23, 1855 (1998) ] Waveguide Crossings G are Qraphics uickTim needed e™ decom toand see pressor athis picture. 1 1x1 0.8 0.6 3x3 t hroughput 0.4 empty 0.2 5x5 5x5 empty 1x10 -2 1x1 1x10 -4 3x3 1x10 -6 5x5 3x3 cr o s s t al k empty 0 1x10 0 1x1 1x10 -8 1x10 -10 0.32 0.33 0.34 f re quency( c/ a) 0.35 0.36 0.37 0.38 Channel-Drop Filters [ S. Fan et al., Phys. Rev. Lett. 80, 960 (1998) ] Channel-Drop Filters QuickTime™ and a Video decompressor are needed to see this picture. QuickTime™ and a Video decompressor are needed to see this picture. Enough passive, linear devices… Photonic crystal cavities: tight confinement (~ /2 diameter) + long lifetime (high Q independent of size) = enhanced nonlinear effects e.g. Kerr nonlinearity, ∆n ~ intensity A Linear Nonlinear Filter in out Linear response: Lorenzian Transmisson shifted peak + nonlinear index shift A Linear Nonlinear “Transistor” Logic gates, switching, rectifiers, amplifiers, isolators, … numerical + feedback Linear response: Lorenzian Transmisson Bistable (hysteresis) response Power threshold is near optimal (~mW for Si and telecom bandwidth) shifted peak Enough passive, linear devices… Photonic crystal cavities: tight confinement (~ /2 diameter) + long lifetime (high Q independent of size) = enhanced nonlinear effects Photonic crystal waveguides: tight confinement (~ /2 diameter) + slow light (e.g. near band edge) = enhanced nonlinear effects Cavities + Cavities = Waveguide “tunneling” coupled-cavity waveguide (CCW/CROW): slow light + zero dispersion [ A. Yariv et al., Opt. Lett. 24, 711 (1999) ] Enhancing tunability with slow light [ M. Soljacic et al., J. Opt. Soc. Am. B 19, 2052 (2002) ] periodicity: light is slowed, but not reflected Uh oh, we live in 3d… C rod layer B A hole layer (fcc crystal) 2d-like defects in 3d [ M. L. Povinelli et al., Phys. Rev. B 64, 075313 (2001) ] modify single layer of holes or rods 3d projected band diagram 0.5 3D Photonic Crystal J J 0.5 J J J J 0.3 0.2 0.1 J TM gap J frequency (c/a) frequency (c/a) 0.4 2D Photonic Crystal 0.4 J J J J J J J J J 0.3 0.2 0.1 0 0 0 0.1 0.2 wavevector 0.3 0.4 kx ( 2/a) 0.5 0 0.1 0.2 wavevector 0.3 0.4 k x ( 2 /a) 0.5 2d-like waveguide mode 3D Photonic Crystal 2D Photonic Crystal z x x y -1 Ez y 1 -1 y Ez 1 2d-like cavity mode The Upshot To design an interesting device, you need only: symmetry + single-mode (usually) + resonance + (ideally) a band gap to forbid losses Oh, and a full Maxwell simulator to get Q parameters, etcetera.
© Copyright 2026 Paperzz