LaOFeAs -- multiferroic manganites Jeroen van den Brink Gianluca Giovannetti,Luuk Ament,Igor Pikovski,Sanjeev Kumar,Antoine Klauser,Carmine Ortix George Sawatzky,Frank Kruger,Ilya Elfimov,Jan Zaanen Krakaw 19/6/2008 LaOFeAs Layered crystal structure Fe S=2 d6 tetrahedral surrounding t2g t2g eg eg S=1 S=0 exp. ordered moment: 0.4 B C-type magnetic order (bad) metal LaOFeAs: LDA+U, C-type magnetic order Fe 3d-band width ~4 eV gap ~0.5 eV S=2 Giovannetti, Kumar, JvdB, arXiv:0804.0866 Phys B. doi:10.1016 (2008) Stochiometric LaOFeAs S=2, Mott insulator high spin Fe found in XAS Bernd Buchner, Martin Knupfer arXiv:0806.2625 Experimental small moment and “metallicity” are due to off-stochiometry Giovannetti, Kumar, JvdB, Phys B. doi:10.1016 (2008) Multiferroics = Magnetic Ferroelectrics Why study them? Magnetic ferroelectrics are very rare! Fundamental interest: Why rare? How to get around? How to get strong coupling between magnetic and ferroelectric orderparameter? Van Aken et al., Nature 449, 702 (2007) Cheong and Mostovoy, Nature Mat. 6, 13 (2007) Eerenstein et al., Nature 442, 759 (2006) Pimenov et al., Nature Phys. 97, 100 (2006) Ikeda et al., Nature 436, 1136 (2005) Lottermoser et al., Nature 430, 541 (2004) Zheng et al., Science 303, 661 (2004) Kimura et al., Nature 426, 55 (2003) Hur et al., Nature 429, 392 (2003) Observed multiferroic couplings -- BiFeO3 and BiMnO3 Tmagnetic<<Tferroelectric orderparameters barely couple -- TbMnO3 , DyMnO3 , Ni3 V2 O8 Tferroelectric=Tmagnetic magnetism induces FE chiral magnetic order (spin spiral) does the job Maxim Mostovoy, PRL 96, 067601 (2006) -- Pr1-xCaxMnO3 , HoMn2O5 magnetism induces FE, but: no chiral symmetry breaking ??? HoMn2O5 Mn3+ Mn4+ Mn3+ Mn4+ HoMn2O5 conceptual picture Mn3+ - + Mn4+ - + - + electronic and ionic displacements due to dislocated SDW / magneto-striction ferroelectric polarization Betouras, Giovannetti, JvdB, PRL 98, 257601 (2007) Ab initio bandstructure computations ~1200 nC/cm2 experimental polarization ~80 nC/cm2 ferroelectric domains? Incorporating electron correlation effects with LDA+U fixes the problem small polarization due to near cancellation of Pion and Pelec Gianluca Giovannetti and JvdB, PRL 100, 227603 (2008) Perovskite crystal structure of Pr1-xCaxMnO3 0.4 < x < 0.5 Oxygen2- Pr3+/Ca2+ Mn4+ / Mn3+ 11 Near x=0.4 : Bond-centered charge/spin ordering eg t2g Dimer A.Daoud-Aladine et al., PRL 89 97205 (2002) Near x=0.5 : Site-centered charge/spin ordering E.O. Wollan and W.C. Koeler, Phys. Rev. 100, 545 (1955) Ferroelectric? x=0.4 x=0.5 Bond centered spin/CO Site centered spin/CO 0.4 < x < 0.5 intermediate Ferro-electric groundstate It is allowed by symmetry: can happen observed to happen will happen Jooss et al., PNAS 104, 13597 (2007) ....and it first happened in microscopic DDEX model H DDEX ij t ijij c i c j J ijSi S j J Si S j J cos ij tij t cos ij 2 z2, z2 ij //z 1, z2, z2 ij //x , 1 4 x 2 y 2 , x 2 y 2 ij // x 43 JvdB, Khomskii, PRL 82, 1016 (1999) stabilization of dislocated SDW phase multiferroicity Efremov, JvdB, Khomskii, Nature Mat. (2004) Computed phase diagram of Pr1-xCaxMnO3 Continous transition from Site centered CO to Bond centered CO “in between order” Breaking of inversion symmetry in the intermediate phase Ferro-electricity Magnetism Efremov, JvdB, Khomskii, Nature Mat. (2004) Giovannetti, Kumar, JvdB, Picozzi, preprint (2008) Conclusions we predict.... LaOFeAs to be Mott insulator with Fe high spin La1/2Ca1/2MnO3 to be strongly multiferroic Simple 1D Picture longitudinal charge displacements suggests FE in quasi-1D organic charge transfer salts which is observed! e.g.: S. Brazovskii, Physics of Organic Superconductors and Conductors Springer Series in Materials Sciences (2008). Perovskite HoMnO3 with GdFeO3 distortion Magnetic E-phase S. Picozzi et al., Phys. Rev. Lett. 99, 227201 (2007). Simple 1D Picture Superexchange strengthens bonds of antiparallel spins all oxygens move down! transversal charge displacements Double exchange strengthen bonds of parallel spins JvdB and Daniel Khomskii, J. Phys. C.M., in press (2008) HoMn2O5 ICM + PE QuickTime™ and a CM+FE TIFF (LZW) decompressor are needed to see this picture. ICM+PE Kimura, Kamada, Noda, Kaneko, Metoki, Kohn cond-mat/0602226 (2006) 1. Phenomenological approach Magneto-electric coupling: Ginzburg-Landau Electric polarization Magnetization Pr M r couple these two orderparameters Free energy must be invariant for: time reversal t t M M P P spatial inversion r r P P MM Magneto-electric coupling: Ginzburg-Landau P, , M, M To build an invariant we need FME (r ) P ( M 2 ) M ( M ) (M ) M ... We are interested in ferroelectrics: uniform electric polarization so that P r p0 which implies that: drP ( M 3 V 2 ) p0 dr ( M 3 V 2 )M 2 surface Our key observation: FME (r ) P ( M ) 2 becomes active if SDW dislocated M M0 cos(qm x ) magnetization is shifted with respect to the lattice (but inversion invariant) Betouras, Giovannetti, JvdB, PRL 98, 257601 (2007) Giovannetti and JvdB, PRL 100, 227603 (2008) Minimize Free Energy FME (r ) P ( M ) 2 with with Ansatz for polarization gives finite p0 and p1 Pr 2 FE (r ) 2E r M M0 cos(qm x ) P p0 p1 cos(qx) only when qm = q/2 For multiferroic coupling it is sufficient to have commensurate dislocated magnetic order YMn2O5 ICM CM: commensurate ICM CM ICM: incommensurate magnetic ordering indeed only commensurate magnetic phase is ferroelectric! Chapon, Radaelli, Blake, Park, Cheong Phys. Rev. Lett. 96, 097601 (2006)
© Copyright 2026 Paperzz