Data Analysis Strategy to Obtain High Precision Missing Mass Spectra For E05-115 Experiment Spectroscopic investigation of Lambda hypernuclei in the wide mass region using the (e,e’K+) reaction (HKS-HES Collaboration) Zhihong Ye Hampton University Feb. 16th 2010, APS Meeting, Washington DC Outline Detector Calibration: Tracking, Timing, Particle Identification Optics Calibration: Splitter, HKS, HES (Angle, Momentum, Time) Kinematics Calibration: Beam energy offset, target effect, center momentum and center angle deviation. Flow Chart Current Status Detectors Calibration Tracking: --- Focal Plan Info KDC1(6) K+ 100.2 cm HKS: Two identical Wire Chambers Resolution: Position: Angle: x, y ~ 0.015 cm, x’, y’ ~ 0.3 mrad EDC1(10) Position: Angle: e’ x ~ 0.007 cm, y ~ 0.015 cm, x’ ~ 0.5 mrad, y’ ~ 0.9 mrad Timing: -- Trigger, TOF • HKS Hodoscopes: 1X(17)+1Y(9)+2X(18) • HES Hodoscopes: 1X(25)+2X(25) K1X(17) K1Y (9) K2X(18) K+ 15.9 cm 133.6 cm E1X (25) E2X(25) 30.0 cm • Time Correction: • Resolution: EDC2(6) ~30.0 cm HES: Honeycomb Chamber + Wire Chamber Resolution: KDC2(6) Pulse High Correction, Alignment, Offsets. Single PMT ~ 110 ps, ~ 0.025 e’ Particle ID: Online Trigger: !(AC1+AC2+AC3) & (WC1+WC2) AC (+< 99%), WC (p+< 99%), Offline KID: Cuts on number of photon electrons (NPE) Optimize Cutting values – More Kaon, less Pion & Proton =0.027 Kaon Beta HKS X WC NPE AC NPE Optics Calibration Optics: Beam Splitter HKS / HES K+/e’ Optics Calibration Optics: Splitter Beam HKS / HES Reconstruction: Angle: x't SS T M Splitter y 't K / e' Momentum: pt K Target Time: Ttar K / e' / e' T xSS FP SS M HKS / HES ySS K / e' FPT HKS X / HES fp K / e ' , fp K / e ' FPT HKS X / HES fp K / e ' , K+/e’ x fp x ' fp y fp y' fp K / e ' Optics Calibration Optics: Splitter Beam Reconstruction: Angle: x't SS T M Splitter y 't K / e' Momentum: pt K Target Time: Ttar K Matrices: M M / e' / e' T Generated from Geant4 simulation P SS T Splitter FP T HKS / HES xSS FP SS M HKS / HES ySS K / e' FPT HKS X / HES fp K / e ' , FP SS HKS / HES FP T HKS / HES fp K / e ' K+/e’ HKS / HES x fp x ' fp y fp y' fp K / e ' FPT HKS X / HES fp K / e ' , Optimized using Sieve Slit data. Optimized using & Spectra. Optimized using & Spectra. Path length correction using RF time. Coincident RF Structure: 2 ns Electron pulse t Jlab electron beam has a 2ns pulse pattern. K / e' tar THKS / HES T TRF After Path length correction RF vs HKS X RF vs HES X Coincident RF Structure: 2 ns Electron pulse t Jlab electron beam has a 2ns pulse pattern. K / e' tar THKS / HES T TRF After Path length correction 2ns RF vs HKS X RF vs HES X Coincident RF Structure: 2 ns Electron pulse t Jlab electron beam has a 2ns pulse pattern. K / e' tar THKS / HES T TRF After Path length correction 2ns RF vs HKS X RF vs HES X Real Events Coincident Time: Select coincident Kaon and electron events: e' Tcoin Ttar TtarK Accidental Kinematics Calibration Ebeam = 2.344 GeV±0.01%; Pk0 = 1.2GeV/c ± 12.5%; Pe0 = 0.844 GeV/c ±17%; Missing Mass: mm f ( Ebeam , pk , x'k , y 'k , pe ' , x'e ' , y 'e ' ) Kinematics Calibration Ebeam = 2.344 GeV±0.01%; Pk0 = 1.2GeV/c ± 12.5%; Pe0 = 0.844 GeV/c ±17%; Missing Mass: mm f ( Ebeam , pk , x'k , y 'k , pe ' , x'e ' , y 'e ' ) Target effect: Due to Bremsstrahlung, Ionization, Multi-Scattering and so on.. Using SIMC (Hall-C standard Monte-Carlo simulation package), for different targets and thickness, we have: Ebeam 100 ~ 500KeV , Ek 40 ~ 350KeV , Ee' 40 ~ 250KeV Kinematics Calibration Ebeam = 2.344 GeV±0.01%; Pk0 = 1.2GeV/c ± 12.5%; Pe0 = 0.844 GeV/c ±17%; Missing Mass: mm f ( Ebeam , pk , x'k , y 'k , pe ' , x'e ' , y 'e ' ) Target effect: Due to Bremsstrahlung, Ionization, Multi-Scattering and so on.. Using SIMC (Hall-C standard Monte-Carlo simulation package), for different targets and thickness, we have: Ebeam 100 ~ 500KeV , Ek 40 ~ 350KeV , Ee' 40 ~ 250KeV Beam Energy Offset: Two energy scan run: E = Ebeam ± 1.0 MeV, we have the correction function: Eoffset f (bpm06 x, bpm06 y, bpm12 x, bpm12 y, bpm17 x, bpm17 y) Central Momentum & Angle Offsets: Magnet field setting, Installation, and Coordinate definition… Central Momentum: Pk 0 Pk 0 Pk 0 , Pe 0 Pe 0 Pe 0 Central Angle: X 'k 0 X 'k 0 X 'k 0 , Y 'k 0 Y 'k 0 Y 'k 0 X 'e 0 X 'e 0 X 'e 0 , Y 'e 0 Y 'e 0 Y 'e 0 Central Momentum & Angle Offsets: Magnet field setting, Installation, and Coordinate definition… Central Momentum: Pk 0 Pk 0 Pk 0 , Pe 0 Pe 0 Pe 0 Central Angle: X 'k 0 X 'k 0 X 'k 0 , Y 'k 0 Y 'k 0 Y 'k 0 X 'e 0 X 'e 0 X 'e 0 , Y 'e 0 Y 'e 0 Y 'e 0 Using the well-known & masses, define Chi-Square: 2 (mm mPDG ) 2 (mm mPDG ) 2 And set X’k0, Y’k0, Pk0, X’e0, Y’e0, Pe0 as parameters, we can fit & data to minimize the Chi-Square, and obtain offset values: 2 0 Pk 0 ?, X k 0 ' ?,... Central Momentum & Angle Offsets: Magnet field setting, Installation, and Coordinate definition… Central Momentum: Pk 0 Pk 0 Pk 0 , Pe 0 Pe 0 Pe 0 Central Angle: X 'k 0 X 'k 0 X 'k 0 , Y 'k 0 Y 'k 0 Y 'k 0 X 'e 0 X 'e 0 X 'e 0 , Y 'e 0 Y 'e 0 Y 'e 0 Using the well-known & masses, define Chi-Square: 2 (mm mPDG ) 2 (mm mPDG ) 2 And set X’k0, Y’k0, Pk0, X’e0, Y’e0, Pe0 as parameters, we can fit & data to minimize the Chi-Square, and obtain offset values: 2 0 Pk 0 ?, X k 0 ' ?,... Missing Mass: mm f ( Ebeam Eoffset Ebeam , pk Pk 0 Ek , x'k X 'k 0 , y 'k Y 'k 0 , pe ' Pe 0 Ee ' , x'e ' X 'e 0 , ye' ' Y 'e 0 ) Flow Chart HKS Tracking (KDC) TOF (Hodoscopes) KID (AC,WC,LC) Raw Data HES Tracking (EDC) TOF (Hodoscopes) Need to do Geant4 Simulation HKS Focal Plane (X,X’,Y,Y’,Tfp) Data & Info Optics (HKS+Splitter) HKS Sieve Slit Kinematics Correction (Beam, Target effects, Momentum, Angular) Coincident (RF ) Lambda&Sigma Spectra HES Sieve Slit HES Focal Plane (X,X’,Y,Y’, Tfp) HKS Target Plane (X’, Y’, P, Ttar) Optics (HES+Splitter) HES Target Plane (X’, Y’, P, Ttar) Missing Mass Current Status & Plan o We are currently working on precise calibration of all detectors. p(e, e' K ) / C (e, e' K )12 B 12 P Shell? G.S? ~1 MeV To Do: o Tracking: Solve HES y’ problem. o Timing: Improve timing and TOF resolution. o PID: Standardize AC, WC cutting values for different targets. o Optics: Optimizing matrices using Sieve Slit data o Kinematics: Improving minimization method. Need a lot of work to reach 350 KeV! Thank you!
© Copyright 2026 Paperzz