Math 1113 Practice for Test 4 x1 2 x2 3x3 6 1. Given the system of equations 5 x1 7 x2 2 x3 0 3x1 (a) Write down the coefficient matrix. 4 x2 8 1 5 3 x3 3 7 2 4 1 2 (b) Write down the augmented matrix. 1 5 3 2 6 0 8 3 7 2 4 1 (c) Using row operations put the augmented matrix into row echelon form. R2 R2 5R1 R3 R3 R3 3R1 6 0 17 13 30 0 2 8 10 R3 (2) 1 2 3 1 2 3 6 0 17 13 30 0 1 4 5 R3 R2 1 2 3 6 0 1 4 5 0 17 13 30 R3 R3 17 R1 R3 6 0 1 4 5 0 0 55 55 R3 (55) 1 2 3 1 2 3 6 0 1 4 5 0 0 1 1 (d) Use back substitution to solve the system. x3 1 x2 4 x3 5 x2 4(1) 5 x2 1 x1 2 x2 3 x3 6 x1 2(1) 3(1) 6 x1 1 Answer: (1, 1, 1) 2. Solve the system that has reduced row echelon form using variables x, y and z. 1 0 4 2 0 1 1 1 0 0 0 0 za y z 1 y a 1 y 1 a x 4z 2 x 4a 2 x 2 4a Answer: (2 4a, 1 a, a) 3. Solve the system that has reduced row echelon form 1 3 0 0 0 0 1 0 0 0 0 1 No solution. The system is inconsistent when there is a leading one in the last column 2 4. Given A and B [5 7] compute AB and BA 3 10 14 AB BA=[31] 15 21 5. A pie maker produces three types of pie in two facilities In the matrix A the number of pies of type i baked at facility j is represented by ai j . 100 400 A 220 120 324 312 The incomes per pie are represented by the matrix B =[ $3.00 $2.50 $4.25] Compute BA and interpret the result. 100 400 BA= =[ 3.00 2.50 4.25] 220 120 [ 2227 2826] 324 312 The total income at facility 1 is $2,227 and the total income at facility 2 is $2826 1 4 1 1 0 0 3 1 1 0 1 0 6. (a) Find the inverse of . 1 2 0 0 0 1 R2 R2 3R1 R3 R3 R1 4 1 1 0 0 1 0 11 2 3 1 0 0 6 1 1 0 1 R2 R2 2 R3 1 1 0 0 1 4 0 1 0 1 1 2 0 6 1 1 0 1 R3 R3 6 R2 1 0 0 1 4 1 0 1 0 1 1 2 0 0 1 7 6 11 R3 ( 1) R3 0 1 4 1 1 0 0 1 0 1 1 2 0 0 1 7 6 11 R1 R1 R3 6 11 1 4 0 6 0 1 0 1 1 2 0 0 1 7 6 11 R1 R1 4 R2 1 0 0 2 2 3 0 1 0 1 1 2 0 0 1 7 6 11 2 2 3 1 A 1 1 2 7 6 11 1 (b) Solve AX B , where B 1 , using your answer to part (a) 1 2 2 3 1 3 X A B 1 1 2 1 2 7 6 11 1 12 1 2 0 0 1 7. Evaluate 1 3 0 0 4 0 3 0 using a cofactor expansion. 0 7 0 11 Expand along the third column 2 0 1 (1) 3 3 31 3 0 0 7 11 2 0 1 3 1 3 0 0 7 11 Now expand along the first row (or whatever) 3 0 1 0 1 3 3[2 0 ( 1) ] 7 11 0 11 0 7 3[2(33) 7] 177 8. Use Cramer's rule to find y in the following system: x 2y z 1 x y z 0 3x 4 y z 0 1 1 1 1 0 1 y 3 0 1 2 1 1 1 3 1 4 2 1 (1)(1)(1) (2)(1)(3) (1)(1)(4) (1)(1)(3) (1)(1)(4) (2)(1)(1) 2 1 1 1 3 4 1 9. Find the area of the triangle with vertices (1, 3), (4, 2) and (−1, 5) x1 y1 1 1 Use area = x2 y2 1 2 x3 y2 1 1 3 1 4 2 1 (1)(2)(1) (3)(1)(1) (1)(4)(5) (1)(2)(1) (1)(1)(5) (3)(4)(1) 4 1 5 1 1 Area = (4) 2 2 10. Use a determinant to find an equation of the line through (−2, 4) and (5, −3). x y 1 Use x2 y2 1 0 x3 y2 1 x 2 y 1 4 1 0 5 3 1 x 4 1 3 1 y 2 1 5 1 7 x 7 y 14 0 This simplifies to x y 2 0 2 4 5 3 0 11. A message is encoded using the matrix in Question 6. The coded message is 50 73 28 16 40 12 62 64 29. Decode the message A B C D E F G H I 1 2 3 4 5 6 7 8 J K M N O P Q R S T U V W X Y Z 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2 3 2 [50 73 28] 1 1 2 7 6 11 2 3 2 3 2 2 [16 40 12] 1 1 2 [62 64 29] 1 1 2 7 6 11 7 6 11 [23 5 12] [12 0 4] [15 14 5] WELL DONE L
© Copyright 2026 Paperzz