Understanding Firm Demand for Temporary Labour in Developing Countries MARIYA ALEKSYNSKA (joint with Janine Berg) ILO DEVELOPING AND IMPLEMENTING POLICIES FOR A BETTER FUTURE AT WORK GENEVA, JULY 2015 I. Introduction Temporary employment prompts policy concerns Most of the research done for developed countries What factors explain the use of temporary labour in developing countries? Is this part of development or firm preference? Do labour market institutions play a role? II. Hypotheses Flexibility Cost saving Technology o Fluctuations in demand (seasonality, business cycle) o Competition o External shocks o Hiring costs (recruitment and firm-specific training vs screening) o On-the-job (wages, bonuses, paid leave, social security etc) o Termination costs (especially as compared to terminating permanent contracts) o Extent of standardisation o Computerization o Firm-specific knowhow Balancing stability and flexibility of workforce: core vs periphery III. Data Description World Bank Enterprises Survey 118 countries, over 72,000 observations, 2006-2014 Other data sources: WB for GDP, ILO for unemployment and EPL data IV. Descriptive Statistics Incidence of temporary employment, as % of total wage employment, in private sector, circa 2010 The mean share of temporary workers is 11% Only about 40% of all firms employ temporary labour Among those that do, the mean share is 27,5% Distribution of the firm-level number of temporary employees, as % of total employment, in firms employing at least 1 temporary worker 0 1 Density 2 3 Kernel density estimate 0 .2 .4 .6 .8 1 temporary employees as % of all employees, employed by a firm in fiscal year kernel = epanechnikov, bandwidth = 0.0230 Firms that do not employ temporary labour are smaller in size and those not offering training; they have otherwise largely similar characteristics to firms employing temporary workers. Incidence of temporary employment, by sector M/S Sector Mean percent of temporary workers per firm M Textiles 0.24 M Leather 0.32 M Garments 0.27 M Food 0.28 M Metals and machinery 0.25 M Electronics 0.25 M Chemicals and pharmaceuticals 0.22 M Wood and furniture 0.31 M Non-metallic and plastic materials 0.28 M Auto and auto components 0.20 M Other manufacturing 0.25 S Retail and wholesale trade 0.26 S Hotels and restaurants 0.29 S Construction, Transportation 0.39 S Other services 0.26 Incidence of temporary employment, by sector M/S Sector Mean percent of temporary workers per firm M Textiles 0.24 M Leather 0.32 M Garments 0.27 M Food 0.28 M Metals and machinery 0.25 M Electronics 0.25 M Chemicals and pharmaceuticals 0.22 M Wood and furniture 0.31 M Non-metallic and plastic materials 0.28 M Auto and auto components 0.20 M Other manufacturing 0.25 S Retail and wholesale trade 0.26 S Hotels and restaurants 0.29 S Construction, Transportation 0.39 S Other services 0.26 Temporary employees and country income .3 Correlation: -0.137 Timor Leste2009 Tanzania2013 Liberia2009 Togo2009 Uganda2013 .2 Kenya2013 Mongolia2009 Chad2009 Congo2009 Mongolia2013 Afghanistan2008 Peru2006 Bolivia2006 Benin2009 Vietnam2009 Philippines2009 Rwanda2011 DRC2010 Kenya2007 Ukraine2013 Tanzania2006 Peru2010 Kyrgyz Republic2013 Honduras2006 Iraq2011 Panama2006 Colombia2010 Kosovo2013 Micronesia2009 BurkinaFaso2009 Mauritania2006 Bolivia2010 Mali2010 Paraguay2006 Niger2009 Vanuatu2009 Colombia2006 Nicaragua2006 Guyana2010 Gabon2009 Centralafricanrepublic2011 Elsalvador2010 Kosovo2009 ElSalvador2006 Rwanda2006 Kyrgyz Republic2009 Tajikistan2013 Samoa2009 Gambia2006 Yemen2010 Mali2007 SriLanka2011 Uganda2006 Nepal2013 Ecuador2006 Venezuela2010 Paraguay2010 Venezuela2006 TrinidadandTobago2010 CapeVerde2009 Nicaragua2010 Djibouti2013 Montenegro2009 Georgia2008 Botswana2006 Bangladesh2007 Ethiopia2011 Armenia2009 Guatemala2006 Malawi2009 Madagascar2009 Tajikistan2008 Côte d'Ivoire2009 Chile2006 Pakistan2007 Poland2009 Zambia2013 LaoPDR2012 StKittsandNevis2010 Grenada2010 Costarica2010 Nepal2009 Angola2006 Guatemala2010 Honduras2010 Cameroon2009 Bahamas2010 DRC2006 Georgia2013 Chile2010 Montenegro2013 Namibia2006 DRC2013 Nigeria2007 Moldova2009 Albania2007 Fiji2009 Barbados2010 Senegal2007 Ghana2007 SouthAfrica2007 StVincentandGrenadines2010 Botswana2010 Mauritius2009 Swaziland2006 Indonesia2009 Guinea2006 Mexico2010 Uruguay2006 Azerbaijan2009 Zambia2007 Burundi2006 Mozambique2007 Croatia2007 Bosnia and Herzegovina2009 DominicanRepublic2010 Croatia2013 Serbia2009 GuineaBissau2006 Angola2010 Eritrea2009 CzechBangladesh2013 Republic2009 Fyr Macedonia2009 China2012 Uruguay2010 Estonia2009 Latvia2009 Russia2012 Brazil2009 Tonga2009 Albania2013 Lithuania2013 Kazakhstan2013 Russia2009 Azerbaijan2013 Lithuania2009 Serbia2013 Jamaica2010 Suriname2010 Ukraine2008 Mexico2006 Kazakhstan2009 Romania2009 Belarus2013 Latvia2013 Belarus2008 Belize2010 Bosnia and Herzegovina2013 Turkey2008 Armenia2013 Fyr Macedonia2013 Panama2010 Antiguaandbarbuda2010 Bulgaria2013 Hungary2009 Moldova2013 LaoPDR2009 Bulgaria2007 Romania2013 StLucia2010 Bulgaria2009 Dominica2010 Sierra Leone2009 0 .1 Lesotho2009 Bhutan2009 20 22 24 26 GDP PPP, in logs 28 30 0 1 2 3 Distribution of temporary employees, as per cent of firm’s workforce, by legal regulations governing fixed-term work 0 .2 .4 .6 .8 x FTCs prohibited for permanent tasks FTCs authorized for permanent tasks 1 Temporary employees and EPL .3 Correlation: 0.029 Tanzania2013 Uganda2013 Vietnam2009 Philippines2009 Afghanistan2014 DRC2010 Lesotho2009 Tanzania2006 Peru2010 Panama2006 BurkinaFaso2009 Niger2009 Centralafricanrepublic2011 Gabon2009 Elsalvador2010 Yemen2010 SriLanka2011 Venezuela2010 Georgia2008 Bangladesh2007 Armenia2009Ethiopia2011 Madagascar2009 Côte d'Ivoire2009 Zambia2013 Malawi2009Angola2006 Cameroon2009 Honduras2010 DRC2006 Georgia2013 Chile2010 Montenegro2013 DRC2013 Moldova2009 Senegal2007 SouthAfrica2007 Indonesia2009 Azerbaijan2009 Argentina2010Mexico2010 China2012 Angola2010 Fyr Macedonia2009 Czech Republic2009 Bangladesh2013 Russia2012 Serbia2013 Mexico2006 Romania2009 Antiguaandbarbuda2010 Bulgaria2013Panama2010 Hungary2009 Fyr Macedonia2013 Moldova2013 Romania2013 StLucia2010 Rwanda2011 Nigeria2007 0 .1 .2 Mongolia2009 Afghanistan2008 Mongolia2013 .2 .4 .6 Level of employment protection, regular contracts .8 V. Empirical framework Temp_share_all ijkt = αijk + β1i Xi + β2iYi + jj + kk + tt+ εijkt Temp_share_all ij - share of temporary labour in firm i operating in sector j country k and year t Xi - the set of individual baseline firm characteristics Yi - set of additional individual firm characteristics : flexibility, cost, and technology factors jj, kk , tt - sector, country, and year, by including the corresponding dummies εijkt - error term Estimations Step 1: Internal Factors VARIABLES (1) VARIABLES Flexibility National market 0.00657*** (0.00192) International market 0.0175*** (0.00368) Informal competition 0.0107*** (0.00160) Sales volatility Training Regulation obstacle 2.11e-14*** -4.14E-15 Employment ratio Total labour cost 0.0136*** 0.000143*** 0.00392*** (0.000569) Constant 0.274*** (0.0211) Observations 57,033 R-squared 0.184 0.00562*** (0.000578) 0.0117*** Certification (0.000912) -0.0108*** (0.00184) Borrowed technology 0.00535* Constant (0.00308) 0.397*** 0.00286*** (0.00285) 0.00471*** 0.00283*** Constant (0.000734) 0.373*** (0.0220) Observations R-squared (3) Technology Telecoms problem Education obstacle (3.67e-05) Finance is an obstacle VARIABLES (0.000849) (0.00220) Employment ratio (start) (2) Cost 48,752 0.125 (0.0654) Observations R-squared 27,336 0.121 Estimations Step 2: External Factors Low-middle income Upper-middle income High-income GDPgrowth GDPgrowth_3y_lag Unemployed Macro Macro, EPL MACRO, EPL, FTC MACRO, EPL, FTC, coverage -0.00134 (0.0154) -0.0503*** (0.0165) -0.0512*** (0.0155) 0.000910 (0.00130) -0.000388 0.00213 (0.0216) -0.0517** (0.0196) -0.0463** (0.0213) 0.000280 (0.00183) 0.000811 -0.00683 (0.0229) -0.0503** (0.0200) -0.0555** (0.0248) 0.000323 (0.00154) -0.000832 -0.0573*** (0.0131) -0.0766*** (0.0186) -0.142*** (0.0212) 0.00128 (0.00139) 0.000984 (0.000720) 0.00101 (0.000743) (0.000900) 0.000458 (0.000929) 0.0161 (0.0724) (0.00117) -0.000362 (0.00107) 0.0914 (0.0581) 0.148*** (0.0278) 0.112** (0.0519) -0.0359** (0.0163) 0.00361 (0.0143) 0.116** (0.0552) (0.00205) -0.00186 (0.00112) 0.175 (1.156) 0.106 (0.493) -0.0572 (1.227) -0.0819*** (0.0139) 0.00812 (0.0165) 0.0942 (0.472) 39,126 0.137 19,940 0.139 19,940 0.144 14,803 0.158 EPLEX EPL Coverage EPLEX*Coverage FTC prohib perm FTC dur unlim Constant Observations R-squared Estimations Step 3: Disagregations by Sector and Country Income, selected results VARIABLES (1) (2) (3) (4) Manuf Services Lower income Upper income International market 0.0215*** 0.00690 0.0225*** 0.0117** Sales volatility (0.00445) 2.11e-14*** (0.0119) -3.54e-14 (0.00672) 2.29e-14** (0.00487) 2.07e-14*** -4.14E-15 (2.86e-14) (9.74e-15) (5.79e-15) 0.000137*** 8.07e-05 0.000240** 0.000100** (4.28e-05) (0.000107) (0.000112) (4.52e-05) 0.00483*** 0.00160 0.00431*** 0.00340*** (0.00106) (0.00171) (0.00157) (0.00105) Education obstacle 0.00337*** 0.00161 0.00421*** 0.00175* Observations R-squared (0.000940) 27,978 0.171 (0.00139) 12,698 0.245 (0.00131) 18,337 0.185 (0.000920) 22,339 0.174 Employment ratio (start) Regulation obstacle Key message: relevance of micro-factors varies across sectors rather than across levels of development Estimations Step 3: Disagregations by Sector and Country Income, selected results (1) Manuf Valid grounds Prohibited grounds Trial period Procedural requirements Notice period Severance / redundnacy pay Redress FTC prohib perm FTC dur unlim Constant Observations R-squared Key (2) Services (3) Lower income (4) Upper income 0.0695*** (0.0257) 0.0303 (0.0245) -0.0119 (0.0217) 0.0213 (0.0303) 0.106 (0.0919) -0.0782 (0.0474) 0.0288 (0.0271) -0.0524*** (0.0185) 0.00756 (0.0219) 0.134* (0.0693) 0.0676*** (0.0247) 0.00604 (0.0208) -0.0390 (0.0215) 0.00627 (0.0201) 0.0189 (0.0663) -0.0103 (0.0343) 0.0554 (0.0277) -0.0506*** (0.0159) -0.0177 (0.0179) 0.298*** (0.0600) 0.148*** (0.0315) 0.0387 (0.0261) -0.108*** (0.0288) -0.0401 (0.0415) -0.00941 (0.0833) -0.0474 (0.0267) 0.0839** (0.0313) -0.0909*** (0.0226) -0.0157 (0.0213) 0.197* (0.0993) 0.255*** (0.0482) 0.0782*** (0.0236) 0.0472*** (0.0116) -0.00673 (0.0146) 0.152** (0.0700) -0.0714 (0.0471) -0.0248 (0.0239) -0.0416*** (0.0125) 0.0191 (0.0117) -0.0436 (0.0542) 13,409 10,314 11,126 12,597 message: relevance of 0.219 macro-factors 0.131 0.180varies across 0.168 levels of development rather than across sectors of activity Final remarks We tested the relevance of flexibility, cost, and technology factors for the firm use of temporary labour in developing countries We confirmed that these factors, when measured at the micro level, are at work, similarly to developed countries At the macro level, the relevance is only partial: regulations governing FTC matter, but regulations governing termination of regular contracts have only a limited relevance; macroeconomic fluctuations have limited relevance Relevance of micro factors varies across sectors rather than across levels of development Relevance of macro factors varies across levels of development rather than across sectors of activity, perhaps suggesting that compliance and enforcement issues are at stake Thank You [email protected]
© Copyright 2026 Paperzz