Rising Geometry Students Summer Skills Workbook June 2014 Name____________ This booklet is a review of the main Algebra I concepts. You should complete each page. Pages 1 through 17 have the answers at the bottom. Please place the number of each problem in the space that matches the answer. For page 18, please complete the questions in the spaces provided. Turn this booklet in the first Day back to school. Please be sure to not use the calculator when you see this symbol. For questions or comments, please email Chariya Fisher at [email protected] Rising Geometry Students Summer Skills Work Page 1 Evaluate the following when x = 4, y = -2, and z = 5. Show all work. Evaluate means to substitute the value in for each variable and simplify the expression. 1) 3x – y 2) xy + z 3) 4x – 3z 4) xyz 5) x – 2y + 3z 6) x (y – 2z) 7) x 2 y 2 8) 10) xy 11) z x 1 x y2 2 9) x y 3 12) 2 z 3 y Place the number to the correct answer for questions 1 through 12 in the box below. 14 12 -3 6 1 -2 -40 8 23 9 -48 16 Rising Geometry Students Summer Skills Work Page 2 Simplify the following by combining like terms. Like terms have the same variable and exponent. These terms can be combined with addition and subtraction without changing the exponent of each term. 1) 5x – 3x 2) 4y – 7y 3) y 6 y 2 y 2 3 y 4) 5x – 3y – x + 7 5) 7y – 12 – 3y 6) 2x – 4 + 3x + 8 7) 5y + 3x – 2z – 3y + 6x + 8 8) 4(x – 2) – 3(x + 7) 9) 4 – 3(x – 5) + 2x 10) x 3x 2 x 8 4 x 11) 2 7 x2 y 3xy 2 x 2 y 8xy 2 4 xy 2 12) x y 3 y 5 x y 4 x y 4 y 2 13) 5(x – 2y + 3) – 2(2y + 3x + 7) 14) 2 2 2 2 2 y2 3y 9 y 7 y2 4 y Place the number to the correct answer for questions 1 through 14 in the box below. 9x + 2y - 2z + 8 5x + 4 -x + 19 2x x - 29 3x 2 7 x 8 5 y2 2 y 9 x 2 y 8xy 2 7 xy -3y 4y -12 5 y 2 2 y 3x 2 y 2 5 x 2 y 7 y -x – 14y + 1 4x - 3y + 7 Rising Geometry Students Summer Skills Work Page 3 Use order of operations (PEMDAS) to simplify the following. 1) 8 + 6 – 3 2) 15 – (7 – 2) – 3 3) 5(4) – 10 4) 24 – 21 ÷ 3 5) 18 – 12 ÷ 4 6) 12 – (4 + 7) 7) 7(3 + 4) 8) 12 ÷ 3 · 4 9) (11 + 4) ÷ 5 10) (12 · 4) ÷ (2 · 2) 11) 30 ÷ 6 – 1 12) 42 ÷ (5 + 2) · 3 13) 4 + 3(7 – 2) 14) 5(6 – 8) 15) 15 – 2(8 + 3) 16) 2 – 8 ÷ 4 17) 4 – 8 + 6 18) 10 - 3(4) Place the number to the correct answer for questions 1 through 18 in the box below. 11 16 -10 7 3 -7 10 12 17 -2 15 1 18 2 4 0 49 19 Rising Geometry Students Summer Skills Work Page 4 Simplify the following: 1) 1 3 2 5 2) 4) 2 4 7 9 5) 2 7) 3 2 5 9 8) 1 10) 3 3 4 5 11) 4 3 1 5 5 3) 2 2 5.256 5 6) 1 5 9) 2 5 6 1 3 4 4 1 2 1 3 5 3 5 2 3 3 10 3 3 1 4 5 12) 3 1 1 1 7 4 Place the number to the correct answer for questions 1 through 12 in the box below. 46 63 14 15 4 5 11 10 2 15 1 957 125 88 35 5 4 29 30 1 3 22 5 Rising Geometry Students Summer Skills Work Page 5 A number is expressed in scientific notation if it is written as a number between 1 and 10 multiplied by a power of 10. For example, 3.2 x 10 is the number 32 written in scientific notation. Write each number in scientific notation: 1) 6,780,000 2) .0678 3) 678 4) 67,800 5) .678 6) .000678 7) 678,000 8) 678,000,000 9) .00678 10) .00000678 11) 678 x 1014 12) 67.8 x 108 13) .678 x 10-10 14) .0678 x 109 15) 678 x 10-12 16) 6,780 Place the number to the correct answer for questions 1 through 16 in the box below. 6.78x1016 6.78x102 6.78x10-1 6.78x10-4 6.78x105 6.78x106 6.78x107 6.78x108 6.78x109 6.78x10-3 6.78x104 6.78x10-6 6.78x10-10 6.78x10-11 6.78x103 6.78x10-2 Rising Geometry Students Summer Skills Work 4 x Ex: 5 15 Page 6 Cross Multiply 5●x = 4●15 Then solve x = 12 Solve the following proportions: 1) 3 n 4 16 2) 2 24 3 n 3) n 56 2 112 4) 14 28 n 4 5) 5 n 6 18 6) 2 14 n 35 7) n 9 4 n 8) n 2 6 4 5 9) n 2 2 3 4 12) 4 n n 25 10) 4 5 n3 n 1 11) 4 n 1 n 3 Place the number to the correct answer for questions 1 through 12 in the box below. 10 36 12 6 5 2.8 15 -0.5 2 -19 1 4, -3 Rising Geometry Students Summer Skills Work Page 7 Solve for x. Show all work. 1) .5x = 3.5 2) x 7 2 4 3) 2 x 309 711 3 4) 3x – 4 = -22 5) 5 – x = 12 6) x 5 7 3 7) 5(x – 3) = -20 8) -3(4 – x ) = 12 9) 2 x 9 14 3 10) 4(x – 3) = 3(x + 7) 11) 5(2x + 3) = 7(x – 3) 12) 2(x – 3) – 4 = 10 13) 5(x – 2) – 3(x + 4) = -20 14) 5x – 13 = 2x + 14 15) 12 – 7x = -3x – 8 Place the number to the correct answer for questions 1 through 15 in the box below. 30 10 -1 8 -3.5 603 33 5 -7 9 6 1 7 -6 -12 Rising Geometry Students Summer Skills Work Page 8 Solve the following multi-step equations: 1) 2x + 4 = 8x - 26 2) 3x – 9 = 2x + 8 3) x - 12 = 5x 4) 7x – 9 = 4x 5) 3x – 8 = x + 12 6) 4x + 8 = 2x + 7 7) 4(x – 3) = -12 8) 5(2x + 7) = -15 9) 4(x + 6) = 2(x – 4) 10) 3(2x – 7) = 6 + 2(x – 3) 11) 2x 1 5 3 12) 3x 4 5 2 Place the number to the correct answer for questions 1 through 12 in the box below. -0.5 10 3 0 -5 -16 5 17 -3 2 8 5.25 Rising Geometry Students Summer Skills Work Page 9 Solve the following: 1) x + 4 < -8 2) x – 12 > 7 3) 4x > -12 4) 5 + x < 12 5) 6 – x > 7 6) 15 < -3x 7) x 3 5 8) x 2 5 9) x 2 7 10) 8 > x – 4 11) 7 < 4 + x 12) -5x > -20 13) 2x – 4 > 12 14) -3x + 5 < -7 15) x 42 7 Place the number to the correct answer for questions 1 through 15 in the box below. x<42 x>4 x>8 x<4 x>3 x<12 x<-14 x<10 x<-12 x<-5 x<-1 x<7 x>-3 x>19 x<-15 Rising Geometry Students Summer Skills Work Page10 The slope m of a line describes how steep it is. The slope is calculated by finding the quotient of the vertical change (change in y) and the horizontal change (change in x). Formula: m y2 y1 x2 x1 Find the slope of the line that contains each pair of points. 1) (2, 4), (4, 6) 2) (3, 2), (-2, -8) 3) (-1, 3), (-2, 5) 4) (8, -3), (10, 0) 5) (0, 0), (6, -3) 6) (3, 4), (-1, 4) 7) (-4, 7), (-7, 15) 8) (2, -2), (6, 5) 9) (4, 3), (4, -5) 10) (2, 8), (7, -7) Place the number to the correct answer for questions 1 through 10 in the box below. No 2 -3 1 0 3 1 7 8 slope 2 4 3 2 -2 Rising Geometry Students Summer Skills Work Page 11 The number 18 is not a perfect square, but it does have a perfect square factor. 18 9 2 should be further simplified to 3 2 . Simplify the following radicals. Think of the largest perfect square that can be simplified. 2) - 18 3) 8 4) 75 5) 6) 500 7) 242 8) 50 9) 700 10) 11) 20 12) 14) 12 15) 48 1) 28 98 13) 24 63 45 Place the number to the correct answer for questions 1 through 15 in the box below. 4 3 2 3 5 3 2 7 10 7 3 2 11 2 2 2 5 2 7 2 2 6 2 5 3 5 10 5 3 7 Rising Geometry Students Summer Skills Work Page 12 Multiply the following either using Distributive Property or FOIL: 1) x 4 ( x 8) 2) x 4 ( x 7) 3) x 5 ( x 8) 4) x 9 ( x 8) 5) x 3 ( x 6) 6) x 7 ( x 8) 7) x 10 ( x 8) 8) x 11 ( x 2) 9) x 12 ( x 4) 10) x 15 ( x 3) 11) 2x 1 ( x 3) 12) 2x 3 ( x 5) 13) 2x 5 (3x 4) 14) 3x 5 (2 x 4) Place the number to the correct answer for questions 1 through 14 in the box below. x 3 x 28 6 x 7 x 20 x 3 x 18 x 2 2 2 2 12 x 45 x 12 x 32 2x x 9 x 22 2x 2 2 2 2 7 x 15 x 13 x 40 x 7x 3 x x 56 6x 2 2 2 18 x 2 80 22 x 20 x x 72 2 x 8 x 48 2 Rising Geometry Students Summer Skills Work Page 13 Factor the following trinomials. 1) x 2 5 x 6 2) x2 9 x 8 3) x2 12 x 32 4) x 2 15x 26 5) x 2 7 x 12 6) x 2 7 x 6 7) x 2 7 x 10 8) x 2 9 x 20 9) x2 9 x 18 10) x2 9 x 14 11) x 2 9 x 8 12) x 2 10 x 24 13) x 2 10 x 11 14) x2 10 x 39 15) x 2 8 x 20 16) x2 5x 14 17) x 2 4 x 21 18) x2 4 x 12 19) x 2 8x 20 20) x2 11x 60 21) x2 9 x 10 Place the number to the correct answer for questions 1 through 21 in the box below. x 1 x 11 x 2 x 5 x 2 x 13 x 4 x 5 x 1 x 8 x 2 x 6 x 2 x 7 x 3 x 13 x 4 x 6 x 2 x 10 x 3 x 6 x 2 x 3 x 2 x 10 x 4 x 8 x 3 x 4 x 1 x 6 x 2 x 7 x 1 x 8 x 3 x 7 x 4 x 15 x 1 x 10 Rising Geometry Students Summer Skills Work Page 14 Simplify the following using the rules for exponents: 1) x2 x3 2) x5 x x4 3) 2 x5 3x4 4) 4 x3 3x 5) 3x3 y(2 x4 )( xy 4 ) 6) x3 y x 4 yz xy 4 z 3 x 2 4 7) 1 10) x 4 2 13) 8) x y 3 11) 3 5 9) x x 4 3 2 x 3x 4 x3 5 x 2 2x y 4 3 3 12) 2 xy 3x 2 y 2 2 5 3 14) 3x 4 y 2 y 7 x 2 15) 7 x 2 y 3x 2 xy 5 y 2 3 3 2 2 16) x 2 y 2 y 3 y 2 Place the number to the correct answer for questions 1 through 16 in the box below. x2 y5 x2 y3 2 x2 y 2 8x12 y9 x15 y 5 6x8 y 5 x5 21x3 y 14 x3 y 2 35x 2 y 3 184x 2 y 3 x8 y 6 z 4 12x 4 6x9 72x 7 y 7 .125x 12 x10 x8 x 22 11x5 Rising Geometry Students Summer Skills Work Page 15 Identify the following formulas for the circle: Circumference (C) = __________________ or _________________ Area = __________________ If π is used in the original information, leave your answer in terms of π, otherwise use π ≈ 3.14. Given the missing part of the following: 1) C = 24 π cm diameter = _______ radius = _______ Area = ___ π cm2 2) C = 10 π cm diameter = _______ radius = _______ Area = ___ π cm2 3) C = 7 π cm diameter = _______ radius = _______ Area = ___ π cm2 4) C ≈ 37.68 cm diameter = _______ radius = _______ Area = _____ cm2 5) C ≈ 15.7 cm diameter = _______ radius = _______ Area = _____ cm2 6) C ≈ 87.92 cm diameter = _______ radius = _______ Area = _____ cm2 7) A = 49πcm2 diameter = _______ radius = _______ C = _____ π cm 8) A = 100πcm2 diameter = _______ radius = _______ C = _____ π cm 9) A ≈ 28.26 cm2 diameter = _______ radius = _______ C = _______cm 10) A ≈ 50.24 cm2 diameter = _______ radius = _______ C = _______cm Place the number to the correct answer for questions 1 through 10 in the box below. 8 cm, 4 cm, 25.12 cm 14 cm, 7 cm, 14 π cm 24 cm, 12 cm, 144 π cm2 12 cm, 6 cm, 113.04 cm2 20 cm, 10 cm, 20 π cm 6 cm, 3 cm, 18.84 cm 7 cm, 3.5 cm, 12.25 π cm2 10 cm, 5 cm, 25 π cm2 28 cm, 14 cm, 615.44 cm2 5 cm, 2.5 cm, 19.625 cm2 Rising Geometry Students Summer Skills Work Page 16 Leaving your answers in terms of π, find the Circumference and the Area of the following: 1) 4) 12 cm C = ________ A = ________ 2) 4 cm C = ________ A = ________ 5) 10 cm C = ________ A = ________ 3) 3 cm C = ________ A = ________ 6) 9 cm C = ________ A = ________ 7 cm C = ________ A = ________ Place the number to the correct answer for questions 1 through 6 in the box below. 9 π cm, 20.25 π cm2 12 π cm, 36 π cm2 6 π cm, 9 π cm2 10 π cm, 25 π cm2 8 π cm, 16 π cm2 14 π cm, 49 π cm2 Rising Geometry Students Summer Skills Work Page 17 The Pythagorean Theorem is a 2 b2 c 2 where a and b are the legs of a right triangle and c is the length of the hypotenuse. 1) Find the length of the hypotenuse of a right triangle whose legs are 5 cm and 12 cm. 2) Find the length of the hypotenuse of a right triangle whose legs are 7 cm and 24 cm. 3) Find the length of the hypotenuse of a right triangle whose legs are 15 cm and 8 cm. 4) If the hypotenuse of a right triangle is 20 cm and the length of one leg is 12 cm, what is the length of the other leg? 5) If the hypotenuse of a right triangle is 10 cm and the length of one leg is 8 cm, what is the length of the other leg? 6) If the hypotenuse of a right triangle is 5 cm and the length of one leg is 3 cm, what is the length of the other leg? 7) If the hypotenuse of a right triangle is 65 cm and the length of one leg is 16 cm, what is the length of the other leg? Place the number to the correct answer for questions 1 through 7 in the box below. 4 cm 16 cm 25 cm 63 cm 6 cm 13 cm 17 cm Rising Geometry Students Summer Skills Work Page 18 A geometry student should be adept at remembering and incorporating formulas into the Geometry curriculum. Complete the following Formulas using the variables indicated Perimeter Rectangle L W Square S S Parallelogram A H B Trapezoid A B H C D Triangle A H C B Area
© Copyright 2025 Paperzz