Trapezoidal Rule for Integration

07.02
Trapezoidal Rule for Integration-More Examples
Electrical Engineering
Example 1
All electrical components, especially off-the-shelf components do not match their nominal
value. Variations in materials and manufacturing as well as operating conditions can affect
their value. Suppose a circuit is designed such that it requires a specific component value,
how confident can we be that the variation in the component value will result in acceptable
circuit behavior? To solve this problem a probability density function is needed to be
integrated to determine the confidence interval. For an oscillator to have its frequency within
5% of the target of 1 kHz, the likelihood of this happening can then be determined by finding
the total area under the normal distribution for the range in question:
2.9
1     
1

x2
2
e dx
2
a) Use single segment Trapezoidal rule to find the frequency.
b) Find the true error, E t , for part (a).
c) Find the absolute relative true error for part (a).
Solution
 f a   f b 
I  b  a 
a)
 , where
2

a  2.15
b  2.9
 2.15
f ( x) 
1
2
f  2.15 
e

x2
2

1
2.152
e
2
 0.03955
f 2.9 
1

2
2.9 2
e 2
2
 0.0059525
 0.039550  0.0059525 
I  2.9   2.15

2

 0.11489
07.02.1
07.02.2
Chapter 07.02
b) The exact value of the above integral cannot be found. For calculating the true error and
relative true error, we assume the value obtained by adaptive numerical integration using
Maple as the exact value.
2.9
1     
 2.15
1
2
e

x2
2
dx
 0.98236
so the true error is
Et  True Value  Approximate Value
 0.98236  0.11489
 0.86746
c) The absolute relative true error, t , would then be
t 
True Error
 100 %
True Value
0.98236  0.11489
 100 %
0.98236
 88.304 %

Example 2
All electrical components, especially off-the-shelf components do not match their nominal
value. Variations in materials and manufacturing as well as operating conditions can affect
their value. Suppose a circuit is designed such that it requires a specific component value,
how confident can we be that the variation in the component value will result in acceptable
circuit behavior? To solve this problem a probability density function is needed to be
integrated to determine the confidence interval. For an oscillator to have its frequency within
5% of the target of 1 kHz, the likelihood of this happening can then be determined by finding
the total area under the normal distribution for the range in question:
2.9
1     
1

x2
2
e dx
2
a) Use 2-segment Trapezoidal rule to find the frequency.
b) Find the true error, E t , for part (a).
c) Find the absolute relative true error for part (a).
Solution
 2.15
a)

ba
 n1

 f (a)  2 f (a  ih )  f (b)
2n 
 i 1


n2
a  2.15
b  2.9
I
Trapezoidal Rule-More Examples: Electrical Engineering
1
f ( x) 
2
e

07.02.3
x2
2
ba
n
2.9   2.15

2
 2.5250

2.9   2.15 
 21



I
f

2
.
15

2
 f a  ih   f 2.9

22
 i 1



h
1
5.05 



f

2
.
15

2
f  2.15  i  2.525  f 2.9


4 
i 1

5.05
 f  2.15  2 f  2.15  i  2.525  f 2.9

4
5.05
 f  2.15  2 f 0.375  f 2.9

4
5.05
0.039550  20.37186  0.0059525

4
 0.99638

Since,
f  2.15 
1
e

2.152
2
2
 0.039550
f 2.9 
1
e

2.9 2
2
2
 0.0059525
f 0.375 
1
e

0.3752
2
2
 0.37186
b) The exact value of the above integral cannot be found. We assume the value obtained by
adaptive numerical integration using Maple as the exact value for calculating the true error
and relative true error.
2.9
1     
 2.15
1
2
e

x2
2
dx
 0.98236
so the true error is
Et  True Value  Approximate Value
 0.98236  0.99638
07.02.4
Chapter 07.02
 0.014025
c) The absolute relative true error, t , would then be
t 
True Error
 100 %
True Value
0.98236  0.99638
 100 %
0.98236
 1.4276 %

Table 1 Values obtained using multiple-segment Trapezoidal rule for
2
1 - x2
e dx
2π
1-α  =  -2.15
2.9
n
Value
Et
1
2
3
4
5
6
7
8
0.11489
0.99638
0.96093
0.96969
0.97402
0.97649
0.97801
0.97901
0.86746
0.014025
0.021427
0.012670
0.0083332
0.0058680
0.0043459
0.0033441
t %
88.304
1.4276
2.1812
1.2897
0.84829
0.59734
0.44239
0.34042
a %
--88.469
3.6891
0.90338
0.44455
0.25359
0.15542
0.10214