Cost Curves Average Costs Marginal Costs Long run and Short Run Cost Function In our example, the short-run cost function was: 70 5 3 + 3,000 c( y ) = y 1 (3,000 )3 Variable costs cv ( y ) Fixed costs F Cost Curve c( y ) c ( y ), cv ( y ), F cv ( y ) F 3,000 0 y Average Cost Function The short run average cost function: 2 c( y ) 70 3,000 3 y + AC ( y ) = = 1 y y (3,000)3 Average variable cost Average fixed cost AVC ( y ) AFC ( y ) Average Fixed Cost Curve AFC ( y ) 3,000 AFC ( y ) = y 0 y Average Variable Cost Curve AVC ( y ) 70 2 3 AVC ( y ) = y 1 (3000)3 AVC ( y ) 0 y Why is AVC Increasing in y? Production function and AVC: 70 1 −1 0.6 0.2 0.6 y = (3,000) ( xl ) → AVC ( y ) = y 1 (3000 )3 Productions function features decreasing returns to scale wrt xl Average Cost Curve AC ( y ) AC ( y ) 124 0 70 2 3,000 3 + AC ( y ) = y 1 y (3000 )3 60 y Marginal Cost Function The short run cost function: ∂c ( y ) ∂cv ( y ) MC ( y ) = = ∂y ∂y The short run marginal cost function: 2 5 70 3 MC ( y ) = y 1 3 (3,000)3 Marginal and Average Variable Cost Curves 5 70 3 y MC ( y ) = 1 3 (3,000 )3 2 AVC ( y ), MC ( y ) MC ( y ) 70 2 y3 AVC ( y ) = 1 (3000 )3 AVC ( y ) 0 y Marginal and Average Cost Curves MC ( y ) AC ( y ) AC ( y ), AVC ( y ), MC ( y ) AVC ( y ) 124 0 60 y Variable Costs and the Marginal Cost Curve 5 70 3 y MC ( y ) = 1 3 (3,000)3 2 MC ( y ) MC ( y ) cv ( y1 ) 0 y1 y Long Run In the long run there are no fixed factors of production Firm can freely adjust inputs Production costs are lower in the long run Long and Short Run Cost Curves cS ( y ) c ( y ), c ( y ) S L cL (y ) 3,000 0 91 y Long and Short Run Average Cost Curves AC S ( y ) AC ( y ) AC L ( y ) 128 124 0 60 91 y Long and Short Run Marginal Cost Curves MC S ( y ) MC ( y ) MC L ( y ) 0 91 y Long and Short Run Cost Functions 1 4 3 4 c ( y ) = 70 y 70 3 L 5 4 1 5 S 3 c ( y ) = 70 y + 3,000 1 (3,000 )3
© Copyright 2026 Paperzz