1 THM If lim β†’βˆž| | = 0 , then This thm is true o

1
DEF 1
A sequence {π‘Žπ‘Žπ‘›π‘› } has the limit L
𝑙𝑙𝑙𝑙𝑙𝑙 π‘Žπ‘Žπ‘›π‘› = 𝐿𝐿
π‘›π‘›β†’βˆž
π‘œπ‘œπ‘œπ‘œ
π‘Žπ‘Žπ‘›π‘› β†’ 𝐿𝐿
π‘Žπ‘Žπ‘Žπ‘Ž
𝑛𝑛 β†’ ∞
if we can make the terms π‘Žπ‘Žπ‘›π‘› as close to 𝐿𝐿 as we like by taking 𝑛𝑛 sufficiently large.
If π‘™π‘™π‘™π‘™π‘šπ‘š π‘Žπ‘Žπ‘›π‘› exists , we say the sequence is convergent.
π‘›π‘›β†’βˆž
Otherwise, we say the sequence is divergent.
THM
If lim |π‘Žπ‘Žπ‘›π‘› | = 0 , then 𝑙𝑙𝑙𝑙𝑙𝑙 π‘Žπ‘Žπ‘›π‘› = 0
π‘₯π‘₯β†’βˆž
π‘›π‘›β†’βˆž
This thm is true only if L = 0
DEF
If the sequence {𝑺𝑺𝒏𝒏 } is convergent and lim 𝑆𝑆𝑛𝑛 = 𝑆𝑆 exists as a real number,
π‘›π‘›β†’βˆž
then the series {𝒂𝒂𝒏𝒏 } is called convergent and we write
∞
οΏ½ π‘Žπ‘Žπ‘›π‘› = 𝑆𝑆
𝑛𝑛=1
β–ͺ S is the sum of the series.
∞
If lim 𝑆𝑆𝑛𝑛 is nonexistent, then the series οΏ½ π‘Žπ‘Žπ‘›π‘› 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 and has no sum.
π‘›π‘›β†’βˆž
𝑛𝑛=1
2
∞
Summary of Tests for Infinite Series Convergence οΏ½οΏ½ π‘Žπ‘Žπ‘›π‘›
𝑛𝑛=1
π‘œπ‘œπ‘œπ‘œ
nth – term test
If 𝑙𝑙𝑙𝑙𝑙𝑙 π‘Žπ‘Žπ‘›π‘› β‰  0, then the series is divergent.
π‘›π‘›β†’βˆž
If 𝑙𝑙𝑙𝑙𝑙𝑙 π‘Žπ‘Žπ‘›π‘› = 0, then the series may converge or diverge, so you need to use different test.
π‘›π‘›β†’βˆž
.
Geometric Series Test
∞
If the series has the form οΏ½ π‘Žπ‘Ž π‘Ÿπ‘Ÿ
𝑛𝑛=1
π‘›π‘›βˆ’1
∞
or οΏ½ π‘Žπ‘Ž π‘Ÿπ‘Ÿ 𝑛𝑛 ,
𝑛𝑛=0
then the series converges if |π‘Ÿπ‘Ÿ| < 1 and diverges otherwise
π‘Žπ‘Ž
If the series converges, then it converges to
1 βˆ’ π‘Ÿπ‘Ÿ
p – series test (proof by integral test)
If the series has the form of
∞
οΏ½
𝑛𝑛=1
1
, then the series converges if p > 1 and diverges otherwise.
𝑛𝑛𝑝𝑝
When 𝑝𝑝 = 1, the series is the divergent Harmonic series.
Integral Test
If π‘Žπ‘Žπ‘›π‘› = 𝑓𝑓(𝑛𝑛) and 𝑓𝑓(π‘₯π‘₯) is 𝐜𝐜ontinuous, 𝐩𝐩ositive and 𝐝𝐝ecreasing function on the interval [1, ∞)
∞
∞
then οΏ½ π‘Žπ‘Žπ‘›π‘› and improper integral οΏ½ 𝑓𝑓(π‘₯π‘₯) 𝑑𝑑𝑑𝑑 either both converge or both diverge.
𝑛𝑛=1
If convergent, upper bound is:
∞
∞
1
∞
οΏ½ π‘Žπ‘Žπ‘›π‘› ≀ π‘Žπ‘Ž1 + οΏ½ 𝑓𝑓(π‘₯π‘₯) 𝑑𝑑𝑑𝑑
𝑛𝑛=1
1
and
S = οΏ½ π‘Žπ‘Žπ‘›π‘› = π‘Žπ‘Ž1 + π‘Žπ‘Ž2 + β‹― + π‘Žπ‘Žπ‘›π‘› + π‘Žπ‘Žπ‘›π‘›+1 + π‘Žπ‘Žπ‘›π‘›+2 + π‘Žπ‘Žπ‘›π‘›+3 + β‹― = 𝑆𝑆𝑛𝑛 + 𝑅𝑅𝑛𝑛
𝑛𝑛=1
𝑆𝑆𝑛𝑛 is Estimation of the sum and 𝑅𝑅𝑛𝑛 is the Remainder
∞
∞
οΏ½ 𝑓𝑓(π‘₯π‘₯)𝑑𝑑𝑑𝑑 ≀ 𝑅𝑅𝑛𝑛 ≀ οΏ½ 𝑓𝑓(π‘₯π‘₯)𝑑𝑑𝑑𝑑
𝑛𝑛+1
𝑛𝑛
⟹
∞
∞
𝑆𝑆𝑛𝑛 + οΏ½ 𝑓𝑓(π‘₯π‘₯)𝑑𝑑𝑑𝑑 ≀ 𝑆𝑆 ≀ 𝑆𝑆𝑛𝑛 + οΏ½ 𝑓𝑓(π‘₯π‘₯)𝑑𝑑𝑑𝑑
𝑛𝑛+1
𝑛𝑛
∞
οΏ½ π‘Žπ‘Žπ‘›π‘› οΏ½
𝑛𝑛=0
3
Direct Comparison Test (DCT)
∞
∞
β–ͺ If π‘Žπ‘Žπ‘›π‘› ≀ 𝑏𝑏𝑛𝑛 and οΏ½ 𝑏𝑏𝑛𝑛 converges, then οΏ½ π‘Žπ‘Žπ‘›π‘› converges.
𝑛𝑛=1
𝑛𝑛=1
∞
∞
β–ͺ If π‘Žπ‘Žπ‘›π‘› β‰₯ 𝑏𝑏𝑛𝑛 and οΏ½ 𝑏𝑏𝑛𝑛 diverges, then οΏ½ π‘Žπ‘Žπ‘›π‘› diverges.
𝑛𝑛=1
𝑛𝑛
1
Ex: compare 𝑛𝑛 to 𝑛𝑛 ,
2
2
𝑛𝑛=1
1
1
𝑛𝑛2
𝑛𝑛
to
,
to 2
(𝑛𝑛 + 3)2
𝑛𝑛3 + 1
𝑛𝑛3 (𝑛𝑛2 + 3)2
Limit Comparison Test (LCT)
(may be used instead of DCT most of the time)
If π‘Žπ‘Žπ‘›π‘› , 𝑏𝑏𝑛𝑛 > 0 and lim οΏ½
π‘›π‘›β†’βˆž
π‘Žπ‘Žπ‘›π‘›
𝑏𝑏𝑛𝑛
� 𝐨𝐨𝐨𝐨 lim � � equal any finite number,
π‘›π‘›β†’βˆž π‘Žπ‘Žπ‘›π‘›
𝑏𝑏𝑛𝑛
then either both οΏ½ π‘Žπ‘Žπ‘›π‘› and οΏ½ 𝑏𝑏𝑛𝑛
converge or diverge.
Use this test when you cannot compare term by term because the rule of sequence is β€œtoo UGLY” but you can still
find a known series to compare with it.
1
3𝑛𝑛2 + 2𝑛𝑛 βˆ’ 1
to 3 (you can disregard the leading coefficient and all nonleading terms,
Ex: compare
5
4𝑛𝑛 βˆ’ 6𝑛𝑛 + 7
𝑛𝑛
1
𝑛𝑛2
looking only at the condensed degree of the leading terms: 5 = 3
𝑛𝑛
𝑛𝑛
Ratio Test
If lim οΏ½
π‘›π‘›β†’βˆž
π‘Žπ‘Žπ‘›π‘›+1
� = L (real number or ∞) , then
π‘Žπ‘Žπ‘›π‘›
(𝑖𝑖) οΏ½ π‘Žπ‘Žπ‘›π‘› converges absolutely (and hence converges) if L < 1
(𝑖𝑖𝑖𝑖) οΏ½ π‘Žπ‘Žπ‘›π‘› diverges if L > 1 (or ∞)
(𝑖𝑖𝑖𝑖𝑖𝑖) the test is inclonclusive if L = 1 (use another test)
Use this test for series whose terms converge rapidly, for instance those involving exponentials and/or factorials!!!
Root Test
If
𝑛𝑛
lim οΏ½|π‘Žπ‘Žπ‘›π‘› | = L (real number or ∞) , then
π‘›π‘›β†’βˆž
(𝑖𝑖) οΏ½ π‘Žπ‘Žπ‘›π‘› converges absolutely (and hence converges) if L < 1
(𝑖𝑖𝑖𝑖) οΏ½ π‘Žπ‘Žπ‘›π‘› diverges if L > 1 (or ∞)
(𝑖𝑖𝑖𝑖𝑖𝑖) the test is inclonclusive if L = 1 (use another test)
𝑒𝑒 2𝑛𝑛
Use this test for series involving nπ‘‘π‘‘β„Ž powers. Ex) οΏ½ 𝑛𝑛
𝑛𝑛
4
Alternating series test
∞
∞
𝑛𝑛=1
𝑛𝑛=1
If the series has the form οΏ½ π‘Žπ‘Žπ‘›π‘› = οΏ½(βˆ’1)π‘›π‘›βˆ’1 𝑏𝑏𝑛𝑛
𝑖𝑖)
𝑖𝑖𝑖𝑖)
0 ≀ 𝑏𝑏𝑛𝑛+1 ≀ 𝑏𝑏𝑛𝑛
𝑙𝑙𝑙𝑙𝑙𝑙 𝑏𝑏𝑛𝑛 = 0
π‘›π‘›β†’βˆž
𝑏𝑏𝑛𝑛 > 0, then the series converges if
𝑓𝑓𝑓𝑓𝑓𝑓 π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝑛𝑛 ∈ 𝑍𝑍 + (decreasing terms)
If either of these conditions fails, the test fails, and you need use a different test.
If convergent, a partial sum Sn is used as an approximation to the total sum S.
𝑅𝑅𝑛𝑛 is the Remainder: |𝑅𝑅𝑛𝑛 | = |𝑆𝑆 βˆ’ 𝑆𝑆𝑛𝑛 | ≀ 𝑏𝑏𝑛𝑛+1 , and the sum 𝑆𝑆 lies: 𝑆𝑆𝑛𝑛 βˆ’ 𝑏𝑏𝑛𝑛+1 ≀ 𝑆𝑆 ≀ 𝑆𝑆𝑛𝑛 + 𝑏𝑏𝑛𝑛+1
ABSOLUTE AND CONDITIONAL CONVERGENCE (for LOCO series +, - ,+,+,+,-,-,-)
∞
∞
𝑛𝑛=1
𝑛𝑛=1
If οΏ½|π‘Žπ‘Žπ‘›π‘› | converges, then οΏ½ π‘Žπ‘Žπ‘›π‘› is 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 π‘ͺπ‘ͺπ‘ͺπ‘ͺπ‘ͺπ‘ͺπ‘ͺπ‘ͺπ‘ͺπ‘ͺπ‘ͺπ‘ͺπ‘ͺπ‘ͺπ‘ͺπ‘ͺπ‘ͺπ‘ͺπ‘ͺπ‘ͺ.
∞
If οΏ½ π‘Žπ‘Žπ‘›π‘› is absolutly convergent then it is (just) convergent. The converse of this statement is false.
𝑛𝑛=1
∞
∞
∞
𝑛𝑛=1
𝑛𝑛=1
𝑛𝑛=1
If οΏ½|π‘Žπ‘Žπ‘›π‘› | diverges but οΏ½ π‘Žπ‘Žπ‘›π‘› converges , then οΏ½ π‘Žπ‘Žπ‘›π‘› is 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠
∞
οΏ½
𝑛𝑛=1
(βˆ’1)π‘›π‘›βˆ’1
is conditially convergent. Harmonic series is divergent, alternating harmonic series is convergent.
𝑛𝑛
Remember, if you are asked to find the ACTUAL sum of an infinite series, it must either be a Geometric
π‘Žπ‘Ž
series ( S =
) or a Telescoping Series (requires expanding and canceling terms).
1βˆ’π‘Ÿπ‘Ÿ
The only other tests that allows us to approximate the infinite sum are the Integral test and the Alternate Series
th
Test. We can find the n partial sum Sn for any series.