28.04.2011 [SEMM Seminar, UC Berkeley, March 28, 2011 ] Why and how civil engineers must manage uncertainty and risk Daniel Straub Engineering Risk Analysis Group TU München Uncertainty on the state of the structural system leads to collapses • Bad Reichenhall Source: Lehrstuhl für Holzbau und Baukonstruktion, TUM 2 1 28.04.2011 Poorly managed risks lead to severe consequences Quelle: wikispaces.com 3 The responsibility of the engineer: Codex Hammurabi (Babylon, 1728-1686 BC) If an engineer builds a house for a man and does not sufficently strengthen the structure, causing its failure and the death of the owner: this engineer shall be killed. From: Bautechnik (1966) 4 2 28.04.2011 Reliability is required and in the 1940s quantified Demand Capacity Probability of failure = Pr ( Demand > Capacity) Pugsley (1942), Freudenthal (1947) 5 1970s: Modern structural reliability methods Transform into standard Normal space and linearize limit state surface at the location closest to the origin (design point) 6 3 28.04.2011 1970s: Reliability updating f(x) Measurement Original model x • A large part of the uncertainty is due to limited information Include information by Bayesian updating 7 1970s: Reliability updating • Bayes’ rule: f x E Pr E x f x • A large part of the uncertainty is due to limited information Include information by Bayesian updating 8 4 28.04.2011 Probaability 1970s: From reliability to risk Consequences Straub (2010). Lecture notes in Engineering Risk Analysis 9 Risk analysis is essential for optimal use of resources Straub (2010). Lecture notes in Engineering Risk Analysis 10 5 28.04.2011 Risk-based inspection, maintenance, repair planning • • • Structures deteriorate with time Deterioration is associated with large uncertainty Inspections are performed f d to reduce d uncertainty The effect of inspections (and monitoring) can only be appraised probabilistically • Applications: – Offshore structures subject to fatigue, corrosion, scour, ship impact, … – Process systems subject to corrosion corrosion, erosion erosion, SCC, etc… – Concrete structures (tunnels, bridges) subject to corrosion of the reinforcement – Aircraft structures 11 Zona de plataformas 12 6 28.04.2011 Plan and optimize inspections • We model the entire service life through event trees: 13 Probabilistic deterioration modelling • Fracture mechanics based probabilistic models of crack growth: Fatigue loads Structural response Crack growth b d 17 16 15 14 TP [s] 13 S 12 11 10 1/pF = 25yr 9 1/pF = 100yr 1/pF = 250yr 8 7 1/pF = 1000yr 4 6 8 10 H [m] S 12 14 m fm da CP ,a K a a, c dN m fm dc CP ,c K c a, c dN 14 7 28.04.2011 Reliability analysis • Results 15 Inspection modeling Probability of Detection on tubulars, underwater • Inspections are also modeled qualitatively 1 ACFM MPI POD 0.8 0.6 0.4 0.2 0 0 2 4 6 8 10 Crack depth [mm] 16 8 28.04.2011 Probability of failure as a function of time and the influence of inspection Straub D., Faber M.H. (2006). Computer‐Aided Civil and Infrastructure Engineering, 21(3), pp. 179‐192. 17 Structural importance • Member/joint importance is determined through pushover analyses • Compare intact structure versus structure with element removed • Determine conditional probability of collapse given element failure 18 9 28.04.2011 Optimization 19 Straub D., Faber M.H. (2004). J. of Offshore Mechanics and Arctic Engineering, 126(3), pp. 265‐271. Quantifying different inspection strategies 60000 Failure Repair p 50000 Inspection Cost 40000 30000 20000 10000 0 RBI 4yr interval Inspection strategy 20yr interval 20 10 28.04.2011 IT implementation (iPlan) • Calculating inspection plans using the generic approach: 21 Extension to other deterioration mechanisms • • • • • Corrosion Ship impact Dropped objects Scour Marine growth Caída de Obj. Obs. Inspección VGE Impactos Observado s Posición del elemento Localizació n Exp. Caída de Obj. Exp. Imp. de Embarcaci ones Tiempo de exposición Crecimient o Marino Huracanes Observado s Relación (SH/SV) Tiemp. Ult. Inspecció n Resultados Inspección Edad del Rec. Exposición a huracán Fecha Med. Ant. Corrosión Espesores Medidos Tiempo Falla Rec. Inspección VDE Falla por sobrecarga Inspección con PND Eficiencia Rec. Tasa de Corrosión Inspección de Elem. Inundados Abolladura s Daño pintura y recubrimie nto Pandeos Daño por corrosión Resistencia del elemento Bayesian networks Capacidad de la estructura 22 11 28.04.2011 Monitoring, Inspection and Maintenance for Concrete Structures Zone A Zone B t,1 ... Straub D., et al. (2009). Structure and Infrastructure Engineering, t,i ... t,n 23 Aspects of Sustainability Nishijima K., Straub D., Faber M.H. (2007). Australian Journal of Civil Engineering, 4(1), pp. 59‐72. 24 12 28.04.2011 Natural hazards risk management: Support optimal decision making 25 Avalanche risk assessment • Where is it safe to build? • Where should protection measures be implemented? • When should roads be closed / buildings be evacuated? Source: Kt. St. Gallen, Switzerland 26 13 28.04.2011 Avalanche risk analysis Avalanche model: Straub D., Grêt‐Regamey A. (2006). Cold Regions Science and Technology, 46(3) , pp. 192‐203. 27 Avalanche risk analysis • Parameter uncertainty • E.g. friction parameter Straub D., Grêt‐Regamey A. (2006). Cold Regions Science and Technology, 46(3) , pp. 192‐203. 28 14 28.04.2011 Avalanche risk analysis • Parameter uncertainty • E.g. friction parameter Straub D., Grêt‐Regamey A. (2006). Cold Regions Science and Technology, 46(3) , pp. 192‐203. 29 Avalanche risk analysis • Observations available (here 50 years) Straub D., Grêt‐Regamey A. (2006). Cold Regions Science and Technology, 46(3) , pp. 192‐203. 30 15 28.04.2011 Avalanche risk analysis • Observations available (here 50 years) Straub D., Grêt‐Regamey A. (2006). Cold Regions Science and Technology, 46(3) , pp. 192‐203. 31 Avalanche risk analysis – Information updating Straub D., Grêt‐Regamey A. (2006). Cold Regions Science and Technology, 46(3) , pp. 192‐203. 32 16 28.04.2011 Avalanche risk analysis Straub D., Grêt‐Regamey A. (2006). Cold Regions Science and Technology, 46(3) , pp. 192‐203. 33 Bayesian networks for avalanche risk assessment Grêt‐Regamey A., Straub D. (2006). Natural Hazards and Earth System Sciences, 6(6), pp. 911‐926. 34 17 28.04.2011 Implementation of the BN models in software is straightforward • Implementation in a GIS environment • Regional risk analysis Grêt‐Regamey A., Straub D. (2006). Natural Hazards and Earth System Sciences, 6(6), pp. 911‐926. 35 Earthquake risk management • Calculate risk: Total Risk [$] 0 0 – 200’000 200’000 – 400’000 400’000 – 600’000 600’000 – 800’000 Bayraktarli et al. (2006) 36 18 28.04.2011 Earthquake risk management requires an understanding of system dependences 37 Bayesian network is a powerful modeling tool • Tsunami warning example: Straub D., (2010). Lecture Notes in Engineering Risk Analysis. TU München 38 19 28.04.2011 Bayesian network in a nutshell • Probabilistic models based on directed acyclic graphs • Models the joint probability distribution of a set of variables 39 Bayesian network in a nutshell 40 20 28.04.2011 Bayesian network in a nutshell • Efficient factoring of the joint probability distribution into conditional (local) distributions given the parents Here: p ( x1 , x2 , x3 , x4 ) p( x1 ) p( x2 | x1 ) p( x3 | x1 ) p( x4 | x3 ) General: n p (x) p[ xi | pa ( xi )] i 1 41 Bayesian network in a nutshell • Facilitates Bayesian updating when additional information (evidence) is available E.g.: p ( x3 | e2 ) p (e2 , x3 ) p(e2 ) p ( x ) p (e 1 X1 2 | x1 ) p ( x3 | x1 ) p ( x ) p (e 1 2 e | x1 ) X2 Straub D., (2010). Lecture Notes in Engineering Risk Analysis. TU München 42 21 28.04.2011 Modelling with BN: System dependence through common factors • Performance of an electrical substation during an EQ 1 0.9 0.8 Fragil gility 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 PGA [g] 43 Can we observe the statistical dependence ? 20 1 Number of failures in 20 components Failures are statistically independent Fragility 0.8 Failures are statistically dependent 15 0.6 10 0.4 5 0.2 0 0 0 0.3 0.6 0.9 PGA [g] 44 22 28.04.2011 And finally… • Accounting for statistical dependence among observations: Transformer TR1 Circuit breaker CB9 1 1 a) Traditional model (posterior mean) 0.9 0.9 b) Improved model (posterior mean) 0.8 c) Improved model (predictive) 0.7 0.7 0.6 0.6 Fragility Fragility 0.8 0.5 0.4 0.5 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 PGA [g] 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 PGA [g] 45 Straub D., Der Kiureghian A. (2008). Structural Safety, 30(4), pp. 320‐366. System fragility • Redundant system: (parallel system with 5 components) Parallel system TR 1 0 10 −1 System fragility 10 −2 10 −3 10 −4 10 −5 Including dependence Neglecting dependence 10 −6 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 PGA [g] Straub D., Der Kiureghian A. (2008). Structural Safety, 30(4), pp. 320‐366. 46 23 28.04.2011 Reliability of an infrastructure system • Determine the reliability (connectivity) under evolving information on hazards, system performances, measurement Straub D., Der Kiureghian A., (2010). Journal of Engineering Mechanics 47 EQ: Modeling systems and portfolio of structures UR R1 R2 R3 V M4 M5 R4a‘ R5a‘ R4 R5 R4b‘ R5b‘ Q Q1 Q2 Q20 E(1) E(2) E(20) H1(1) H1(2) H1(20) H(1) H(2) H(20) UH1 UH2 UH20 UH Straub D., Der Kiureghian A., (2010). Journal of Engineering Mechanics 48 24 28.04.2011 Temporal model Straub D., Der Kiureghian A., (2010). Journal of Engineering Mechanics 49 Spatial model Straub D., Der Kiureghian A., (2010). Journal of Engineering Mechanics 50 25 28.04.2011 Reliability of the infrastructure system is updated in near-real-time as information becomes available Small earthquake event (proof loading effect) One year later One year later Detailed inspection of structures Prior model First observations after EQ after Q Immediately after EQ event Straub D., Der Kiureghian A., (2010). Journal of Engineering Mechanics 51 Decisions in complex systems under conditions of uncertainty Aging of the infrastructure system: ‐ Monitoring & Inspection ‐ Maintenance ‐ Replacement R l t / redesign / d i Natural hazards in the system „built environment“ ‐ Prevention ‐ Emergency response ‐ Rehabilitation R h bilit ti Safety in the system „society“ ‐ Target reliability ‐ Prescriptive limits ‐ Service life duration 52 26 28.04.2011 Vision • Decision support systems which: – – – – – Provide accurate assessments of system state at all times Include state-of-the-art models Account for past observations Use near-real-time observation Suggest optimal decisions Bensi M.T. (2010). PhD thesis, UC Berkeley. 53 Questions? Contact: www era bv tum de www.era.bv.tum.de [email protected] Next e t week ee Reliability e ab ty se seminar a o on : Information updating in reliability and risk analysis 54 27
© Copyright 2026 Paperzz