Bayesian modelling of Enterococcus Exceedences at Boston Harbor Beaches Ann Michelle Morrison OMSAP June 10, 2008 Beach Management • Two Priorities – Protect Public Health – Maintain Recreational Beach Access • Fecal Indicator Bacteria – Enterococcus – Exceed: >104 CFU/100 mL – No Exceed: 104 CFU/100 mL Bayesian Networks • Bayesian networks are models that relate possible states of reality by probability • Bayes Rule, developed by Revered Thomas Bayes For any two events, A and B, p(B|A) = p(A|B) x p(B) / p(A) Conditional Probability – everything is related! Basic Bayesian Network Design • Bayesian networks are generally designed to follow causal linkages Netica Tutorial, Norsys, Inc. 2007 Constitution Beach Bayesian Network 72 Hour Rain 0 to 0.01 32.1 0.01 to 0.21 33.5 0.21 to 3.16 34.5 0.619 ± 0.92 pLogan 3 Day Rain 0 33.4 0 to 0.23 33.2 0.23 to 7.85 33.5 1.39 ± 2.3 1 2 3 4 48 Hour Rain 0 47.6 0 to 0.17 25.6 0.17 to 3.16 26.8 0.469 ± 0.85 pECOC 2 to 10 31.4 10 to 50 44.3 50 to 18300 24.3 2240 ± 4700 Phase Stage 34.0 23.2 8.38 34.4 2.43 ± 1.3 pLogan 2 Day Rain 0 48.1 0 to 0.22 28.1 0.22 to 3.36 23.9 0.458 ± 0.87 pLogan Rain 0 68.1 0 to 0.17 17.3 0.17 to 3.36 14.6 0.273 ± 0.71 Dry, Damp, Wet Damp 30.9 Dry 33.3 Heavy 18.4 Light Rain 17.4 Exceed Enterococcus No 91.7 Yes 8.28 Low Tide Height -0.56 to 0.05 32.7 0.05 to 0.31 34.1 0.31 to 0.81 33.2 0.164 ± 0.36 pSunshine Percent 0 to 50 35.6 50 to 82 31.0 82 to 100 33.4 59.8 ± 30 Tide Height MLLW -0.4 to 1.7 34.3 1.7 to 2.6 32.7 2.6 to 3.6 33.0 1.95 ± 1.1 Wind Direction E 17.7 N 6.67 NE 6.76 NW 10.8 S 12.6 SE 5.27 SW 21.1 W 19.0 WNW 0.20 24 Hour Rain 0 66.4 0 to 0.11 16.3 0.11 to 2.44 17.3 0.229 ± 0.55 pWind Direction E 17.0 N 7.14 NE 7.36 NW 10.2 S 12.8 SE 4.83 SW 20.9 W 19.7 pAvg_ Wind Speed 4.3 to 8.5 32.3 8.5 to 11 38.3 11 to 70 29.4 17.7 ± 17 pWind Speed Peak 11 to 20 27.0 20 to 25 39.0 25 to 74 34.0 29.8 ± 17 Salinity 19.1 to 29.4 29.3 29.4 to 30.2 36.1 30.2 to 37.4 34.7 29.6 ± 4.3 Water Temperature -0.6 to 19 28.3 19 to 21 36.2 21 to 27.5 35.5 18.4 ± 6.9 Boston Harbor Beaches Management Model Comparison – Constitution Beach Management Model TPR TNR Green Flag Red Flag Bayesian (1996 – 2004) 0.76 0.82 0.97 0.32 48 Hour Rain 0.21 in. threshold 0.65 0.80 0.96 0.23 Previous Day’s Enterococcus 0.17 0.93 0.93 0.17 Management Model Comparison – Wollaston Beach Management Model TPR TNR Green Flag Red Flag Bayesian (1996 – 2004) 0.69 0.80 0.95 0.35 48 Hour Rain 0.21 in. threshold 0.56 0.79 0.92 0.30 Previous Day’s Enterococcus 0.24 0.89 0.89 0.24 Management Model Comparison – Tenean Beach Management Model TPR TNR Green Flag Red Flag Bayesian (1996 – 2004) 0.57 0.88 0.93 0.44 48 Hour Rain 0.21 in. threshold 0.60 0.79 0.93 0.30 Previous Day’s Enterococcus 0.34 0.90 0.91 0.30 Management Model Comparison – Carson Beach Management Model TPR TNR Green Flag Red Flag Bayesian (1996 – 2004) 0.28 0.92 0.95 0.20 48 Hour Rain 0.21 in. threshold 0.52 0.76 0.96 0.12 Previous Day’s Enterococcus 0.16 0.95 0.95 0.16 Conclusions • Bayesian networks are powerful tools to visually model an environment • The Bayesian networks for Constitution, Wollaston, and Tenean Beaches perform as well or better than a rainfall alone management model • Carson Beach has a very low probability of an Enterococcus exceedence. 48 Hour Rainfall thresholds are the most protective, but often close a clean beach Rain is IMPORTANT 1996 – 2004 Local gauges TPR 0.76 1996 – 2007 Logan Only TPR 0.21 Carson 0.28 0 Tenean 0.57 0.56 Wollaston 0.69 0.56 Beach Constitution
© Copyright 2026 Paperzz