MULTISTAGE AMPLIFIERS PART I - BJT AMPLIFIERS ACKNOLEDGEMENT The materials presented in these notes were partly taken from the original notes “MULSTISTAGE AMPLIFIERS” by ENCIK SOHIFUL ANUAR BIN ZAINOL MURAD, School of Microelectronic 1 Many applications cannot be handled with singletransistor amplifiers in order to meet the specification of a given amplification factor, input resistance and output resistance As a solution – transistor amplifier circuits can be connected in series or cascaded amplifiers This can be done either to increase the overall small-signal voltage gain or provide an overall voltage gain greater than 1 with a very low output resistance 2 Multistage amplifier configuration Cascade /RC coupling . . R C1 RB . R C2 . vo Q2 vi . Q1 3 Multistage amplifier configuration . Cascode R1 . RL . vo Q2 R2 vi . Q1 R3 4 Multistage amplifier configuration Darlington/Direct coupling . . R1 R2 . vo Q2 vi . Q1 5 Multistage amplifier configuration Transformer coupling . T vo Q2 R1 vi . Q1 6 i) Cascade connection - The most widely used method - Coupling a signal from one stage to the another stage and block dc voltage from one stage to the another stage - The signal developed across the collector resistor of each stage is coupled into the base of the next stage - The overall gain = product of the individual gain 7 Example 1 V CC R1 15 kW RC1 2.2 kW b 1 = b 2 = 200 +20 V ro1 = ro2 = R3 15 kW RC2 2.2 kW Ro Ri R2 4.7 kW RE1 1 kW R4 4.7 kW RE2 1 kW Draw the AC equivalent circuit and calculate Av, Ri and Ro. 8 V CC +20 V Solution DC analysis R1 15 kW RC1 2.2 kW The circuit under DC condition (stage 1 and stage 2 are identical) Q1 R2 4.7 kW RE1 1 kW 9 Applying Thevenin’s theorem, the circuit becomes; V CC I BQ1 = I BQ 2 = 19.89 μA RC1 2.2 kW V BB 4.77 V I CQ1 = I CQ 2 = 3.979 mA bIB R BB IB 20 V r 1 = r 2 = 1.307 kW g m1 = g m 2 = 0.153 A/V 3.58 kW (1+b )I B RE1 1 kW 10 AC analysis The small-signal equivalent circuit (mid-band); Vi R B1 B1 r1 B2 C1 + v1 - R C1 R B2 r2 g m 1v 1 E1 RB1 = R1 // R2 Vo C2 + v2 - RC2 g m 2v 2 E2 RB 2 = R3 // R4 11 Vo = g m 2v 2 RC 2 Vo A2 = = g m 2 RC 2 v 2 v 2 = g m1v 1 (RC1 // RB 2 // r 2 ) = g m1Vi (RC1 // RB 2 // r 2 ) A1 = v 1 = Vi v 2 = g m 2 (RC1 // RB 2 // r 2 ) Vi 12 The small-signal voltage gain; A = A1 A2 = g m1 g m 2 RC 2 (RC1 // RB 2 // r 2 ) Substituting values; RB1 = RB 2 = R3 // R4 = 15 // 4.7 = 3.579 kW RC1 // RB 2 // r 2 = 2.2 // 3.579 // 1.307 = 667 W A = 0.153 0.153 2200 667 = 34350 V/V 13 The input resistance; Rin = RB1 // r 1 = 3.579 // 1.307 = 0.957 kW The output resistance; Ro = RC 2 = 2.2 kW 14 Example 2 Assuming b1 = 170, b2 = 150 and VBE(ON) = 0.7 V, calculate the voltage gain Av where; vo Av = vs 15 V CC DC analysis +5 V I1 RBB = R1 R2 = 33.3 kW R1 + R2 RE2 RC1 5 kW IB2 VE2 VC1 IB1 R BB V BB VBB = VEE + (VCC = 1.667 R2 VEE ) R1 + R2 2 kW IE2 Q2 IC1 VB1 Q1 VE1 RE1 IE1 VC2 RC2 IC2 1.5 kW 2 kW V EE -5 V 16 The base-emitter loop of Q1 VBB + RBB I B1 + VBE1 + RE1I E1 + VEE = 0 RBB I B1 + (b1 + 1)RE1I B1 = VBB VEE VBE1 Substituting values; 33.3 103 I B1 + (170 + 1)2 103 I B1 = 1.667 + 5 0.7 I B1 = 7 A I C1 = b1I B1 = 1.19 mA I E1 = (b1 + 1)I B1 = 1.197 mA 17 VB1 = VBB RBB I B1 = 1.9 V VE1 = RE1I E1 + VEE = 2.606 V For the RC1 – collector of Q1 – base of Q2 – RE2 loop RE 2 I E 2 + VEB2 = RC1 I1 I 1 = I C1 I B 2 and I E 2 = (b 2 + 1)I B 2 (b 2 + 1)RE 2 I B 2 + VEB2 = RC1 ( I C1 I B 2 ) 18 Substituting values; (150 + 1)2 103 I B 2 + 0.7 = 5 103 (1.19 103 I B 2 ) I B 2 = 17 μA I C 2 = b 2 I B 2 = 2.565 mA I E 2 = (b2 + 1)I B 2 = 2.582 mA I1 = I C1 I B 2 = 1.19 0.017 = 1.173 mA 19 VC1 = VCC RC1I1 = 5 5 1.173 = 0.865 V VE 2 = VCC RE 2 I E 2 = 5 2 2.582 = 0.164 V VC 2 = RC 2 I C 2 + VEE = 1.5 2.565 5 = 1.175 V 20 AC analysis V 2 A1 Vs Vo A2 V 2 21 V 2 = g m1V 1 (RC1 // r 2 ) Rin V 1 = Vs RS + Rin V 2 = g m1 (RC1 // r 2 ) V 1 V 1 Rin = Vs RS + Rin Rin V 2 V 2 V 1 A1 = = = g m1 (RC1 // r 2 ) Vs V 1 Vs RS + Rin Vo = g m 2V 2 (RC 2 // RL ) Vo A2 = = g m 2 (RC 2 // RL ) V 2 22 Rin g m 2 (RC 2 // RL ) A = A1 A2 = g m1 (RC1 // r 2 ) RS + Rin Rin (RC1 // r 2 )(RC 2 // RL ) A = g m1 g m 2 RS + Rin Substituting values; g m1 = I C1 1.19 = = 45.77 mA/V VT 26 VT 26 r 1 = b1 = 170 = 3714 W I C1 1.19 23 gm2 I C 2 2.565 = = = 98.65 mA/V VT 26 VT 26 r 2 = b 2 = 150 = 1520 W IC 2 2.565 Rin = R1 // R2 // r 1 = 100 // 50 // 3.714 = 3.342 kW Rin (RC1 // r 2 )(RC 2 // RL ) A = g m1 g m 2 RS + Rin 3.342 = 45.77 98.65 (5 // 1.52 )(1.5 // 5) 0.5 + 3.342 A = 5286 V/V 24 ii) Cascode connection - A cascode connection has one transistor on top of (in series with) another - The i/p applied to a C-E amp. (Q1) whose output is used to drive a C-B amp. (Q2) - The o/p signal current of Q1 is the i/p signal of Q2 - The advantage: provides a high i/p impedance with low voltage gain to ensure the i/p Miller capacitance is at a min. with the C-B stage providing good high freq. operation 25 V CC RC CC2 R1 vo CB Q2 RL R2 CC1 Q1 vs R3 RE CE Cascode amplifier 26 V CC DC analysis May be performed using the following figure; I1 R1 bI I1 1 B1 1+ b2 R2 b1 I B1 1+ b2 RC Q2 b1 I B1 I B1 Q1 bI I1 1 B1 I B1 1+ b2 R3 b1 I B1 b 2 1+ b2 (1 + b1 )I B1 RE 27 The equations are (assuming VBE = 0.7 V for both BJT’s); b1I B1 b1I B1 + R3 I1 R1I1 + R2 I1 I B1 = VCC b2 +1 b2 + 1 b1I B1 R3 I1 I B1 = 0.7 + RE (b1 + 1)I B1 b2 +1 The above equations may solved for the two unknown currents namely I1 and IB1. 28 AC analysis Q2 vo Q1 vs R BB RBB = R2 // R3 R L' RL '= RC // RL The equivalent circuit under AC condition 29 C2 vo B1 vs R BB r 1 RBB = R2 // R3 C1 E2 + v 1 E1 r 2 g mv 1 g mv 2 R L' + v 2 B2 RL '= RC // RL The ac equivalent circuit using hybrid- model for BJT 30 vo = g m 2v 2 RL ' (1) At node E2; v 2 g m1v 1 = + g m 2 v 2 r 2 Or; v 2 g m1r 2 v 1 = 1 + g m 2 r 2 Substituting in (1); g m1 g m 2 r 2 b2 RL ' v 1 = g m1 RL ' vs vo = 1 + b2 1 + g m 2 r 2 31 The small-signal voltage gain; b2 vo RL ' Av = = g m1 vs 1 + b2 When b2 >> 1 Av g m1RL ' 32 V CC Example 3 R1 76 kW CB +15 V RC 5 kW CC2 Q2 R2 RL Compute the approximate smallsignal voltage gain vo 5 kW 28 kW CC1 b1 = b 2 = 150 Q1 VBE1 = VBE 2 = 0.7 V vs R3 37 kW RE 3 kW VT = 26 mV CE 33 V CC SOLUTION +15 V I1 DC analysis R1 76 kW bI I1 1 B1 1+ b2 R2 b1 I B1 1+ b2 RC b1 I B1 1+ b2 b 2 Q2 28 kW b1 I B1 I B1 Q1 bI I1 1 B1 I B1 1+ b2 R3 5 kW (1 + b1 )I B1 37 kW RE 3 kW The circuit under DC condition 34 b1I B1 b1I B1 + R3 I1 R1I1 + R2 I1 I B1 = VCC b2 +1 b2 + 1 Substituting values; 150 I B1 150 I B1 76kI1 + 28k I1 + 37 k I I 1 B1 = 15 150 + 1 150 + 1 141I1 101.54I B1 = 15 103 (1) 35 b1I B1 R3 I1 I B1 = 0.7 + RE (b1 + 1)I B1 b2 +1 Or; b1I B1 R3 I1 I B1 RE (b1 + 1)I B1 = 0.7 b2 + 1 Substituting values; 150 I B1 37 I1 I B1 3(150 + 1)I B1 = 0.7 10 3 150 + 1 37 I1 526.75I B1 = 0.7 103 36 I1 = 0.0189 103 + 14.24I B1 (2) Substituting for I1 in (1) ( ) 141 0.0189 103 + 14.24I B1 101.54I B1 = 15 103 I B1 12.335 10 3 = = 6.47 A 1906.3 I CQ1 = bI B1 = 150 6.47 A = 0.97 mA I E 2 = I CQ1 = 0.97 mA 37 I B2 = I E2 0.97 = = 6.42 A b + 1 151 I CQ 2 = bI B 2 = 150 6.42 A = 0.964 mA 38 AC analysis C2 vo B1 vs R BB r 1 C1 E2 + v 1 E1 r 2 g mv 1 g mv 2 R L' + v 2 B2 Small-signal equivalent circuit using hybrid- model 39 (1) vo = g m 2v 2 RL ' At node E2; Hence; g m1v 1 = v 2 v 2 + g m 2 v 2 r 2 g m1r 2 v 1 = 1 + r 2 g m 2 Substituting for v2 in (1); g m1r 2 g m 2 RL ' v 1 vo = 1 + r 2 g m 2 40 Or; b2 RL ' vi vo = g m1 1 + b2 The voltage gain; b2 vo RL ' Av = g m1 vi 1 + b2 When b2 1; Av g m1RL ' 41 Substituting values; g m1 = I CQ1 VT 0.97 = = 37.3 mA/V 26 RL ' = RC // RL = 5k // 5k = 2.5 kW Av 0.0373(2500) Av = 93 V/V 42 iii) Darlington connection C Darlington pair c1 Internal connection; • Collectors of Q1 and Q2; • Emitter of Q1 and base of Q2. Provides high current gain : IC b2IB IC b1 B c2 Q1 IB e1 b2 Q2 e2 E 43 Currents in darlington pair b 1I B 1 IB1 Q1 I E 1 = (1+b 1)I B 1 = I B 2 I C 1 + IC 2 = b 1 + b 2(1+b 1)I B 1 I C 2 = b 2I B 2 =b 2(1+b 1)I B 1 Q2 I E 2 = (1+b 2)I B 2 =(1+b 1)(1+b 2)I B 1 44 If b1 = b2 = b and assuming b is large; bIB1 IB1 Q1 I E 1 = (1+b )I B 1 = I B 2 I C 1 + IC 2 b 2I B 1 I C 2 = b I B 2 =b (1+b )I B 1 Q2 I E 2 = (1+b )I B 2 =(1+b )2I B 1 45 Hybrid- model (assuming ro1 = ro2 = ); b1 C c1 B b1 c2 Q1 e1 b2 Q2 e2 E r 1 c1 + V 1 e1 g m 1V 1 b2 r 2 + V 2 e2 c2 g m 2V 2 46 Darlington configuration provides; • Increased current; • High input resistance. Darlington pair configuration 47 Small-signal equivalent circuit 48 Input voltage source is transformed into current source g m1V 1 = g m1r 1I i = b1I i V 1 = I i r 1 Vi = V 1 + V 2 V 2 = (1 + b1 )I i r 2 I o = g m1V 1 + g m 2V 2 = b1 I i + b 2 (1 + b1 )I i g m 2V 2 = g m 2 (1 + b1 )I i r 2 = b 2 (1 + b1 )I i I b 2 = I i + b1I i = (1 + b1 )I i 49 V 1 = I i r 1 g m1V 1 = g m1r 1I i = b1I i I b 2 = I i + b1I i = (1 + b1 )I i V 2 = I b 2 r 2 = (1 + b1 )I i r 2 g m 2V 2 = g m 2 (1 + b1 )I i r 2 = b 2 (1 + b1 )I i I o = g m1V 1 + g m 2V 2 = b1I i + b 2 (1 + b1 )I i The current gain is; Io Ai = = b1 + b 2 (1 + b1 ) b1b 2 Ii 50 Vi = V 1 + V 2 = I i r 1 + (1 + b1 )I i r 2 The input resistance is; Vi Ri = = r 1 + (1 + b1 )r 2 Ii EXERCISE 1 Show that the approximate expression for the input resistance of the darlington configuration above is; Ri 2b1r 2 Hints: use the relationships: r = bVT I CQ & I CQ1 I CQ 2 b2 51 Example 4 b1 = b2 = 100 VA1 = VA2 = VBE1 = VBE 2 = 0.7 V Determine the; (a) Q-point for Q1 and Q2; (b) voltage gain vo/vs; (c) input resistance Ris; (d) output resistance Ro 52 V CC +10 V (a) Determination of Q-points Using Thevenin’s theorem; VBB RC R1 R2 = 2.72 V = VCC R1 + R2 2.2 kW 335 kW Q1 Q2 RBB = R1 R2 = 91 kW R1 + R2 R2 125 kW RE2 1 kW DC equivalent circuit 53 The circuit becomes; V BB +2.72 V R BB V CC +10 V RC 2.2 kW b1 = b2 = 100 IC1 IB1 IC2 Q1 91 kW IE2 RE2 I B 2 = I E1 = (b + 1)I B1 VBE1 = VBE 2 = 0.7 V Q2 IB2 VA1 = VA2 = 1 kW I E 2 = (b + 1)I B 2 = (b + 1) I B1 2 54 RBB I B1 + 2VBE + RE 2 (b + 1) I B1 = VBB 2 Substituting values; 91kI B1 + 2 0.7 + 1k (100 + 1) I B1 = 2.72 2 1.32 I B1 = 10 3 = 0.128 μA 10292 I C1 = 12.8 μA I E1 = I B 2 = 12.93 μA I C 2 = 1.293 mA I E 2 = 1.3 mA VE 2 = 1.3 1 = 1.3 V VE1 = 1.3 + 0.7 = 2 V VC1 = VC 2 = 10 2.2(1.293 + 0.0128) = 7.127 V 55 VCE1 = VC1 VE1 = 7.127 2 = 5.127 V VCE 2 = VC 2 VE 2 = 7.127 1.3 = 5.827 V (a) The Q-points are; Q1 : I CQ1 = 12.8 μA; VCEQ1 = 5.127 V Q2 : I CQ 2 = 1.293 mA; VCEQ 2 = 5.827 V 56 (b) The small-signal voltage gain (mid-band); R is vo vs R BB Q1 Q2 RC Ro The equivalent circuit under AC condition 57 Using the hybrid- model of transistor, the equivalent circuit becomes; R is Ro io ii vs r 1 vo + v 1 g m 1v 1 R BB r 2 + v 2 RC g m 2v 2 58 g m1 = I CQ1 gm2 = I CQ 2 r 1 = r 2 = = VT VT b1 g m1 b2 gm2 12.8 A = 0.492 mA/V 26 mV 1.293 mA = = 49.73 mA/V 26 mV 100 = = 203.25 kW 3 0.492 10 100 = = 2 kW 3 49.73 10 59 vo = (g m1V 1 + g m 2V 2 )RC V 2 V 1 r 2 = + g m1V 1 r 2 = + g m1r 2 V 1 r 1 r 1 r 2 ( ) V 2 = 1 + b1 V 1 r 1 Substituting for V2 in the expression for vo and simplifying; b1 + (1 + b1 )b 2 vo = RCV 1 r 1 60 vs = V 1 + V 2 Substituting for V2; r 2 vs = V 1 + (1 + b1 ) V 1 r 1 V 2 = (1 + b1 ) r 2 V 1 r 1 b1 + (1 + b1 )b 2 vo = RCV 1 r 1 b1 + (1 + b1 )b 2 RCV 1 r 1 vo Av = = r 2 vs V 1 + (1 + b1 ) V 1 r 1 Simplifying; vo b1 + (1 + b1 )b 2 RC Av = = vs r 1 + (1 + b1 )r 2 61 Substituting values; 100 + 100 + 100 2.2 = 2 Av (203.25 + 2 + 100 2) Av = 55.4 V/V 62 R is R ib ii + r 1 R BB Ro io ib vo + v 1 g m 1v 1 vs r 2 - Ris = RBB // Rib RC + v 2 g m 2v 2 vs Rib = ib 63 vs = V 1 + V 2 V 1 = ib r 1 V 2 = (ib + g m1V 1 )r 2 = (ib + g m1r 1ib )r 2 = (1 + b1 )r 2ib vs = r 1ib + (1 + b1 )r 2ib Rib = vs = r 1 + (1 + b1 )r 2 ib Substituting values; Rib = 203 + (1 + 100)2 = 405 kW 64 Ris = RBB // Rib = 91 405 91 + 405 Ris = 73.6 kW Ro = RC = 2.2 kW 65 EXERCISE 2 Find; (a) ICQ1 and ICQ2 (b) Av = vo/vs (c) Rib and Ro I CQ 1 I CQ 2 b1 = b 2 = 100 VA1 = VA 2 = Answers: (a) 2.08 mA & 69.9 mA (b) 0.99 V/V (c) 480 kW & 0.469 W 66
© Copyright 2026 Paperzz