Systems of Nonlinear Equations A system of nonlinear algebraic equations may arise when one is dealing with problems involving optimization and numerical integration (Gauss quadratures). Generally, the system of equations may not be of the polynomial variety. Therefore a system of n equations in n unknowns is called nonlinear if one or more of the equations in the systems is/are nonlinear. The numerical methods we discussed so far have been concerned with finding a root of a nonlinear algebraic equation with one independent variable. We now consider methods for solving systems of nonlinear algebraic equations in which each equation is a function of a specified number of variables. Consider the system of two nonlinear equations with two variables f1 ( x, y ) 0 f 2 ( x, y ) 0 The problem can be stated as follows: f1 ( x, y) 0 Given the continuous functions ----------------f 2 ( x, y) 0 , find the values x = α and y = β and ---------------such that f1 ( , ) 0 and ----------------------f 2 ( , ) 0 ------------------ f1 ( x, y) The function -----------------and ----------------f 2 ( x, y) may be algebraic equations, transcendental or any nonlinear relationship between the input x and y f1 ( x, y) 0 f 2 ( x, y) 0 and the output -----------------and ------------------. The solutions to ---------are the intersections of the --------------------------------------------------,-------------- f1 ( x, y) f 2 ( x, y) 0 This problem is considerably more complicated then solution of a single nonlinear equation. The one-point iterative method discussed in the previous Section (Secant Method ) for the solution of a single equation may be extended to system. So to solve the system of nonlinear equations we have many methods but we will use the Newton’s method. f1 ( x, y ) 4 x 3 y 6 0 f 2 ( x, y ) x 2 y 1 0 Newton’s Method Consider the two nonlinear equations specified by the equations f1 ( x, y ) 0 f 2 ( x, y ) 0 ( xn , yn ) an approximation to a Suppose that ------------is root (α, β), then by using the Taylor’s theorem for f1 ( x, y) and --------functions of two variables for -----------( xn , yn ) f 2 ( x, y) -------------expanding about -----------, Newton’s Method we have and Newton’s Method f 2 ( , ) 0 these Since --------------f1 ( , ) 0 and -----------------, equations, with x = α and y = β, give Newton’s Method The Newton’s method has a condition that initial ( xn , yn ) approximation -------------should sufficiently close to exact root (α, β), therefore, the higher order terms may be neglected to obtain Newton’s Method We see that this represents a system of two linear algebraic equations for α and β. Of course, since the higher order terms are omitted in the derivation of these equations, their solution (α, β) is no longer an exact root of --------and ------. However, it will usually be a better approximation than ( xn , yn ) Newton’s Method ( xn 1 , yn 1 ) -------------------, so replacing (α, β) by -----------------in ----and ------, gives the iterative scheme Then writing in the matrix form, we have Newton’s Method f1 , f 2 where ---------and their partial derivatives--------------f1 , f 2 are evaluated at-------------. ( xn , yn ) x x Newton’s Method Hence We call the following matrix J a Jacobian matrix Newton’s Method Note that -------can be written in the simplified form as follows Newton’s Method where h and k can be evaluated as and Newton’s Method where all functions are to be evaluated at (x, y). The Newton’s method for a pair of equations in two unknowns is therefore where (h, k) are given by ------( xn , yn ) evaluated at -------------. Newton’s Method At a starting approximation ---------------, ( x0 , y0 ) the f 2 y are functions f1 , f1x , f1y , f 2 , f 2x and -------, evaluated. The linear equations are then solved for -------------and ( x1, y1 ) whole process is repeated until convergence is obtained. Newton’s Method By comparison of the and shows that the above procedure is indeed an extension of the Newton’s method in one variable, where division by f ′ generalized to pre-multiplication by J−1. Newton’s Method Procedure (Newton’s Method for Two Nonlinear Equations) 1. Choose the initial guess for the roots of the system, so that the determinant of the Jacobian matrix is not zero. 2. Establish Tolerance ϵ(> 0). 3. Evaluate the Jacobian at initial approximations and then find inverse of Jacobian. Newton’s Method Procedure (Newton’s Method for Two Nonlinear Equations) 1. Choose the initial guess for the roots of the system, so that the determinant of the Jacobian matrix is not zero. 2. Establish Tolerance ϵ(> 0). 3. Evaluate the Jacobian at initial approximations and then find inverse of Jacobian. Newton’s Method Procedure (Newton’s Method for Two Nonlinear Equations) 4. Compute new approximation to the roots by using iterative h x x n1 n n X formula X ----------------; --------------, -----------,------------ Z X y Z X . n 1 n 1 n 1 n n k n yn ) (xn−1, ( xn1, yyn−1)∥ 5. Check tolerance limit. If ∥(xn,( xyn) n , yn − n1 ) ≤ ϵ, for n ≥ 0, then end; otherwise, go back to step 3, and repeat the process. سوف نستعرض حساب مقلوب مصفوفة في الحالة على المثال التالي: 0 0 1 A 2 1 3 1 1 4 n=3 ------------det( A) نحسب قيمة 0 0 1 det( A) 2 1 3 1 1 4 0 0 2 1 1 1 det( A) ((0 * 1* 4) (0 * 3 *1) (1* 2 *1)) ((0 * 2 * 4) (0 * 3 *1) (1* 1*1)) det( A) (0 0 2) ((0) (0) (1)) det( A) 2 1 det( A) 3 0 c11 c12 adj ( A) C T c21 c22 c31 c32 c13 c23 c33 T ------------adj ( A) نحسب قيمة 0 0 1 c11 (1)11 2 1 3 (1)11 (( 1* 4) (3 *1)) (4 3) 7 1 1 4 0 0 1 c12 (1)1 2 2 1 3 (1)1 2 (( 2 * 4) (3 *1)) (8 3) 5 1 1 4 0 0 1 c13 (1)13 2 1 3 (1)13 (( 2 *1) (1*1)) (2 1) 3 1 1 4 0 0 1 c21 (1) 21 2 1 3 (1) 21 ((0 * 4) (1*1)) (0 1) 1 1 1 4 0 0 1 c22 (1) 2 2 2 1 3 (1) 2 2 ((0 * 4) (1*1)) (0 1) 1 1 1 4 0 0 1 c23 (1) 23 2 1 3 (1) 23 ((0 *1) (0 *1)) (0 0) 0 1 1 4 0 0 1 c31 (1)31 2 1 3 (1)31 ((0 * 3) (1* 1)) (0 1) 1 1 1 4 0 0 1 c32 (1)3 2 2 1 3 (1)3 2 ((0 * 3) (1* 2)) (0 2) 2 1 1 4 0 0 1 c33 (1)33 2 1 3 (1)33 ((0 * 1) (0 * 2)) (0 0) 0 1 1 4 7 5 3 C 1 1 0 1 2 0 7 1 1 C T 5 1 2 3 0 0 7 3 A1 5 3 1 1 3 1 3 0 2 3 0 1 3 0 0 1 7 3 AA1 2 1 3 5 3 1 1 4 1 0 0 1 1 AA 14 3 5 3 3 7 3 5 3 4 1 3 1 3 0 2 3 0 1 3 000 000 2 1 0 2 2 0 3 3 3 3 1 1 0 1 2 0 3 3 3 3 1 0 0 1 AA 0 1 0 I 0 0 1 a b ------------n=2 في الحالة A c d det( A) ad bc T d c d b adj ( A) C b a c a T d ad bc 1 A c ad bc b ad bc a ad bc
© Copyright 2026 Paperzz