The magnification theorem Olaf Wucknitz [email protected] Three decades of gravitational lenses, JENAM, 21 April 2009 2.5 decades of the magnification theorem General theorems in lensing • odd image theorem even image corollary • cusp relation flux ratio anomalies • lensing is achromatic chromatic microlensing • magnification theorem ? titlepage introduction summary contents bonus back forward previous next fullscreen 1 Light deflection dz 1 α̃ = ∆ = dl c Naive Newtonian calculation: GM Φ=− R titlepage Z dl ∇⊥Φ c ∼ α Soldner 1801 (Newton) Einstein 1915 (general relativity) GM α̃ = 2 2 c r GM α̃ = 4 2 c r introduction summary −→ contents bonus back forward previous next fullscreen 2 Distortion/magnification lensed source M θs θ θ s = θ − α(θ) lens equation ∂α dθ = M−1 dθ dθ s = dθ − ∂θ first derivative magnification / mapping matrix M(θ) = µ = ± det M (area) magnification = amplification titlepage introduction summary contents bonus back forward ∂α 1− ∂θ −1 previous next fullscreen 3 Magnification — amplification source Ω lens observer • observer’s view • solid angles measure apparent size Ωs Ω • magnification = Ωs _ Ω • flux distributed over solid angle source lens _ Ωs observer • source’s view Ω̄ • amplification = Ω̄s titlepage introduction summary contents bonus back forward previous next fullscreen 4 Example: point-mass µ+ µ− 4 2 0 -2 -4 -2 -1.5 -1 -0.5 0 θs 0.5 1 1.5 2 [ Wambsganss (1998), Liv. Rev. Rel. 1, 12 ] titlepage introduction summary contents bonus back forward previous next fullscreen 5 [ Einstein notebooks 1910–1912 ] I’ve seen this before . . . [ Einstein (1936) ] [ see also Refsdal (1964) ] titlepage introduction summary contents bonus back forward previous next fullscreen 6 Potential, light travel time • potential ψ α(θ) = ∇ψ(θ) • Poisson equation ∇2ψ(θ) =: 2κ(θ) = 2σ = 2 ΣΣc DdDs ∆t = φ(θ) c Dds • light-travel time for virtual ray (θ s fixed) • Fermat-potential (θ − θ s)2 φ(θ) = − ψ(θ) 2 • Fermat’s principle: real images are ? minima, (e.g. unperturbed image) ? maxima, or ? saddle-points of φ titlepage introduction summary contents bonus back forward previous next fullscreen 7 Magnification theorem [ Schneider (1984) ] • Hessian of Fermat-potential is inverse magnification matrix 2 ∂ φ 1 − κ − γx ∂α −γ y −1 = = µ = 1 − −γy 1 − κ + γx ∂θ ∂θ 2 √ • diagonalise: rotate shear, γ = γx + γy 1 − κ − γ 0 −1 µ = 0 1 − κ + γ • minimum: both eigenvalues positive • Poisson: convergence κ = σ ≥ 0 • sum: 2(1 − κ) > 0 κ<1 0≤κ<1 • µ−1 = (1 − κ)2 − γ 2 titlepage introduction summary contents bonus 0 < µ−1 ≤ 1 back forward previous next fullscreen 8 An apparent paradox • source in centre • amplif. ≥ 1 in all directions • integrate over sphere • total flux amplification ! • conservation of energy ? • solution to energy crisis ? • lensing cannot create photons titlepage introduction summary contents bonus back forward previous next fullscreen 9 The standard explanation • lens distorts geometry • area of surface shrinks ! • have to compare with same mean geometry • compare with same mean density in Universe [ Weinberg (1976) ] titlepage introduction summary contents bonus back forward previous next fullscreen 10 Bad excuse, because . . . • equivalent: refraction or Newtonian deflection • does not change geometry • same formalism • same paradox ! • so far: tangential plane ? no problem in the plane • now: do it on the sphere ! titlepage introduction summary contents bonus back forward previous next fullscreen 11 Deflection angle for the sphere calculation for Ds → ∞ 2GM α = − 2 x0 c Z∞ h dz x20 +(z−z0)2 i−3/2 0 θ m α = cot 2 2 → 3 m θ m/θ (m/2) cot (θ/2) α 2 1 α θs M θ z 0 x π/2 0 π θ Dd [ compare Avni & Shulami (1988) and Jaroszynski & Paczynski (1996) ] titlepage introduction summary contents bonus back forward previous next fullscreen 12 Magnification for the sphere i 2h m m ∂α 2 = 1+ − 1 + O θ µ−1 = 1 − ∂θ 2 θ4 • for point-mass m ∼ (100)2 = 2.35 · 10−11 2 m µ−1 = 1 − 4 θ µtot µ+ −µ− 10 µtot−1 µ+−1 −µ− 3 2 1 0 1 [10−11] • planar approximation -1 -2 0.1 titlepage 1 θs [arcsec] introduction summary contents 10 bonus back 0 forward 500 1000 previous 1500 θs [arcsec] next 2000 fullscreen 2500 -3 13 Lensing on the sphere • far from optical axis: µ < 1 • in this situation: magnification theorem not valid • integration over sphere: mean µ is 1 no paradox • modified Poisson equation h ∇2ψ(θ) =: 2κ(θ) = 2 σ(θ) − σ̄ • not always κ ≥ 0 i failure of theorem • field lines decay! titlepage introduction summary contents bonus back forward previous next fullscreen 14 Field lines on the sphere FIELD LINES titlepage introduction summary contents bonus back forward previous next fullscreen 15 Back to gravitation and summary • short summary ? flat spacetime with refractive medium (or Newtonian) ? magnification theorem not valid ? modified Poisson equation • equivalent: gravity with appropriate reference situation ? constant area of sphere magnification theorem invalid, no paradox ? advantage: magnification is function of deflection • not equivalent: ‘inappropriate’ reference situation ? constant affine distance, area not constant focusing theorem valid, apparent paradox ? planar proof does still not hold for sphere (e.g. mass shell) [ Wucknitz (2008), MNRAS 386, 230 ] titlepage introduction summary contents bonus back forward previous next fullscreen 16 Bonus: From deflection to magnification • magnification on the plane ? derivative of deflection angle ? constant deflection not relevant • magnification on the sphere ? derivatives still relevant ? ‘constant’ deflection too! ? parallel transport 6= rigid rotation titlepage introduction summary contents bonus back forward previous next fullscreen 17 Exact magnification on the sphere (1) • lens equation ? = Θsµ Θµ − aµ(Θ) ? is not a vector equation (for finite a) ! • alternative description ? ? ? ? start at Θµ move in the direction of −aµ along a geodesic for a total distance of |a| • geodesic equation α µ ν ẍα + Γµν ẋ ẋ = 0 • affine parameter λ from 0 (Θ) to 1 (Θs) titlepage introduction summary contents bonus back forward previous next fullscreen 18 Exact magnification on the sphere (2) xµ(0) = Θµ • start ẋµ(0) = −aµ xµ(1) = Θsµ • end • slightly displaced start: geodesic deviation D2ξ α β µ ν α = ẋ ẋ ξ Rµβν 2 Dλ • curvature tensor α α α α ρ α ρ Rµβν := Γµν,β − Γµβ,ν + Γρβ Γµν − Γρν Γµβ 1 α α = 2 δβ gµν − δν gµβ K titlepage introduction summary contents bonus back forward previous next fullscreen 19 Exact magnification on the sphere (3) • coordinates k and ⊥ to aµ • result for geodesic deviation ~ ~ ξ(1) = M−1ξ(0) • magnification matrix −1 M = k k −a;⊥ 1 − a;k −a⊥ ;k sin(a/K) a/K ⊥ sin(a/K) cos(a/K) − a;⊥ a/K k k 1 − a;k −a;⊥ ≈ ⊥ −a⊥ 1 − a ;⊥ ;k titlepage introduction summary contents bonus back forward previous next fullscreen 20 Affine distance, light travel time ds2 = (1 + 2Ψ ) dt2 − (1 − 2Ψ ) dx2 • metric (c = 1) • affine distance, light travel time: measured at observer’s position R • light travel time: T = (1 + Ψ0) dx (1 − 2Ψ ) R • affine distance: L = (1 − Ψ0) dx • general focusing theorem: titlepage introduction summary contents bonus µ > 1 for constant affine distance back forward previous next fullscreen 21 Lensing by a spherical shell • shell of radius (metric) r0 with mass M GM/c2 • σ≈ for σ 1 r0 • limit r0, M → 0 with σ = const no change of global geometry • unlensed situation ? (re-)move sphere or . . . r ? affine distance Λ = √ constant 1 − 2σ • focusing theorem: compare with constant Λ titlepage introduction summary contents bonus back forward previous −→ next focusing fullscreen 22 Contents 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 titlepage The magnification theorem Light deflection Distortion/magnification Magnification — amplification Example: point-mass I’ve seen this before . . . Potential, light travel time Magnification theorem An apparent paradox The standard explanation Bad excuse, because . . . Deflection angle for the sphere Magnification for the sphere Lensing on the sphere Field lines on the sphere Back to gravitation and summary Bonus: From deflection to magnification introduction summary contents bonus back forward previous next fullscreen 23 18 19 20 21 22 23 titlepage Exact magnification on the sphere (1) Exact magnification on the sphere (2) Exact magnification on the sphere (3) Affine distance, light travel time Lensing by a spherical shell Contents introduction summary contents bonus back forward previous next fullscreen 24
© Copyright 2026 Paperzz