Bulk and Spectral Observables in Lattice QCD Tetsuo Hatsuda (初田哲男) Univ. Tokyo (東京大学) RHIC (2000- ) Three Major Tools to study Early Universe LATTICE WMAP (2001-) Contents [1] Introduction -- lattice approach to hot QCD [2] Bulk properties of hot QCD -- equation of state -- order of the thermal transition -- critical temperature -- critical point at finite density (precision) (precision) (precison) (exploratory) [3] Spectral properties of hot QCD -- heavy probes -- light probes [4] Summary (exploratory) (exploratory) Introduction T QGP Asakawa & Yazaki, Nuc. Phys A504 (‘89) 668 cSB CSC Yamamoto, Tachibana, Baym & T.H., Phys. Rev. Lett. 97 (2006)122001 mB Lattice QCD Why lattice ? • well defined QM (finite a and L) • gauge invariant • fully non-perturbative What one can do • hadron mass, coupling, form factor etc • scattering (phase shift, potential etc) • hot plasma What one cannot do (at present) • cold plasma • non-equilibrium plasma Lattice thermodynamics a 1/T L Full QCD Fermions: staggered, Wilson, Domain-wall, Overlap different way of handling chiral symmetry Improved actions: asqtad, p4, stout, clover … different way of reducing the discretization error Modern algorithms: RHMC, DDHMC … techniques to make the simulations fast and reliable 2+1 flavor, physical quark mass, a 0, L ∞ To collect 1000 indep. gauge conf. On 243x40, a=0.08 fm lattice (T=0) Clark, hep-lat/0610048. QCD Cluster @ FNAL PACS-CS @ Tsukuba BlueGene/L @ KEK ApeNEXT @ Rome QCDOC @ RBRC-Columbia Bulk Properties of Hot QCD QGP cSB CSC Energy density in full QCD (Nf=2+1) MILC Coll., hep-lat/061001 O(a2) improved action Ns/Nt=2, inexact R-algorithm. Order of the transition in full QCD (Nf=2+1) cm/T2 cm/T2 Fluctuation: chiral susceptibility 1/T mp=235, 300, 355, 405MeV Wuppertal-Budapest Coll., Nature 443 (2006) Pseudo critical temperature Tpc n-th order transiton: non-analiticity starts from e.g. 1st order: P smooth, dP/dT=s discontinuous 2nd order: P smooth, dP/dT=s smooth, (d/dT)2P=ds/dT=cV/T divergent crossover: P(K) is everywhere analytic cm/T2 Intrinsic ambiguity to define Tpc Tpc (a 0) in full QCD (Nf=2+1) from cm/T2 [MeV] Staggered fermion MILC Coll., hep-lat/0405029 169(12)(4)(5) MeV Asqtad, Nt=4,6,8, Ns/Nt=2, r_1=0.317(7) fm RBC-Bielefeld Coll., hep-lat/0608013 192(7)(4) MeV P4fat3, Nt=4,6 Ns/Nt=2-4, r_0=0.469(7) fm Wuppertal-Budapest Coll., hep-lat/0609068 151(3)(3) MeV + 9 MeV stout, Nt=6,8,10, Ns/Nt=4, F_K scale WHOT-QCD Coll., preliminary 175(4)(2) MeV (Nf=2, Nt=6, Polyakov-loop sus.) clover, Nt=4, 6, Ns/Nt=3-4, m_V scale Wilson fermion [MeV] Tpc on the lattice from chain rule Sommer scales r0=0.469 (7) fm, HPQCD-UKQCD Coll. hep-lat/0507013 from bottomonium mass splitting (Nf=2+1, staggered) r0=0.516 (21) fm, CP-PACS-JLQCD Coll., hep-lat/0610050 from ρ-meson mass (Nf=2+1, Wilson) Critical point QGP cSB CSC de Forcrand and Phillipsen, hep-lat/0607017 Nf=2+1, Nt=4, standard staggered Cf. Asakawa & Yazaki, NPA504 (1989) 668 Klimt, Lutz & Weise, PLB249 (’90) 386 Spectral Properties of Hot QCD pz Shear viscosity in quenched QCD h/s pQCD ΛQCD T px AdS/CFT What are the elementary excitations in the plasma? DeTar’s conjecture Phys.Rev.D32 (1985) 276 T/Tc Nakamura & Sakai, hep-lat/0510100 py Charmonium “wave function”(quenched QCD) 5 4 free r (GeV-1) Matsui & Satz, PLB178 (’86) Miyamura et al., PRL57 (’86) 3 T/Tc=1.53 r 2 0.5fm T/Tc=0.93 g t (GeV-1) QCD-TARO Coll., Phys. Rev. D63 (’01) Charmonium spectra in quenched QCD anisotropic lattice, 323 x (96-32) x=4.0, at=0.01 fm, (Ls=1.25fm) Asakawa & Hatsuda, hep-lat/0308034 J/y isotropic lattice, 483 x(24-12), a=0.04 fm (Ls=1.9 fm) Datta, Karsch, Petreczky & Wetzorke, hep-lat/0312034 J/yhc cc hc g anisotropic lattice, 243 x (160-34) x=4.0, at=0.056 fm, (Ls=1.34 fm) Jakovac, Petreczky, Petrov & Velytsky hep-lat/0611017 h Charmonium spectra in full QCD (Nf=2) Net dissociation rate may even be Hatsuda, hep-ph/0509306 smaller in full QCD g,u,d hc J/y Hamber-Wu, stout, ξ=6, at=0.025fm, 83 x (16,24,32), mp/mr=0.5 Aarts et al., hep-lat/0610065 J/Y moving in the plasma in quenched QCD g g Datta, Karsch, Wissel, Petreczky & Wetzorke, [hep-lat/0409147] Aarts, Allton, Foley, Hands & Kim, [hep-lat/0610061] Bottomonium spectra in quenched QCD quenched, a = 0.02 fm Datta, Jakovac, Karsch & Petreczky, [hep-lat/0603002] anisotropic lattice, 243 x (160-34) x=4.0, at=0.056 fm, (Ls=1.34 fm) Jakovac, Petreczky, Petrov & Velytsky hep-lat/0611017 Light meson spectra in quenched QCD mud << ms~Tc << mc < mb ss-channel at T/Tc= 1.4 A(ω)/ω2 mφ(T=0)=1.03 GeV Asakawa, Nakahara & Hatsuda, [hep-lat/0208059] T 3 10 Tc viscous fluid weakly int. q + g plasma Hot QCD -- a “paradigm” -pz q + g plasma ΛQCD T q + g +”extra” plasma ? perfect fluid T* ~ 2Tc Tc px High Tc superconductor fp Pion gas viscous fluid Resonance gas 0 py Chen, Stajic, Tan & Levin, Phys. Rep. (’05) Summary 1. Progress in lattice QCD Improved action, Faster algorithm, Faster computer simulations of the REAL world 2. Progress in bulk thermodynamics Equation of state, Pseudo-critical temperature, Susceptibilities precision science 3. Progress in spectral analysis elementary excitations in QGP still exploratory 4. Progress in finite density RHIC LATTICE many attempts, no conclusion yet AdS/CFT HTS/BEC Back up slides Scale of each “phase” QGP cSB CSC T (MeV) Yukawa regime Hagedorn regime Symmetry of each “phase” (case for small mud with ms=∞) SU C (3) [SU L (2) SU R (2)] U B (1) QGP cSB SU C (3) SU L R (2) U B (1) qq 0 CSC ~ SUC (2) [SU L (2) SU R (2)] U BC (1) qq 0 ・ Ginzburg-Landau Potential (3-flavor, chiral limit) Symmetry: ~ Chiral modes: Diquark modes: G SU(3)L SU(3)R B# A# SU(3)C 3 3* 0 2/3 1 3 1 2/3 -2/3 3 1 3 2/3 2/3 3 ・ Ginzburg-Landau Potential (3-flavor, chiral limit) Yamamoto, Tachibana, Baym & Hatsuda, hep-ph/0605018 = U(1)A breaking terms = Examples in full lattice QCD Confining string Heavy bound states Nf= 2, Wilson, 243x40 a= 0.083 fm L= 2 fm mp/mr= 0.704 0.5fm 1fm Mass-(spin avaraged 1s) [MeV] [ V(R) - 2mHL ] a R Nf= 2+1, staggered, 163x48, 203x64, 283x96 a = 0.18, 0.12, 0.086 fm L= 2.8, 2.4, 2.4 fm 1.5fm R/a SESAM Coll., Phys.Rev.D71 (2005) 114513 MILC Coll., hep-lat/0510072 QGP for g << 1 ( T >> 100 GeV ) Relativistic plasma : Inter-particle distance Electric screening Magnetic screening Debye number : 1/g2T 1/gT “Coulomb” coupling parameter : S. Ichimaru, Rev. Mod. Phys. 54 (’82) 1071 1/T Non-Abelian magnetic problem EOS : A. Linde, Phys. Lett. B96 (’80) 289 ν μ magnetic screening : “Debye” screening : Kraemmer & Rebhan, Rept.Prog.Phys.67 (’04)351 QCD is non-perturbative even at T = ∞ soft magnetic gluons are always non-perturbative even if g 0 (T ∞) pertubation theory from O(g6) (wm~ g2T) Karsch, hep-lat/0608003 Wuppertal-Budapest Coll., hep-lat/0510084 stout, Ccond/Cnt correction by hand Ns/Nt=3 Tc in 2-favor lattice QCD Filled:Nt=4, Open:Nt=6 173±8 MeV Small mud Ejiri (’04) Heavy probes of QGP Dynamic probe Static probe Matsui & Satz, PLB178 (’86) Miyamura et al., PRL57 (’86) Gluon matter (quenched QCD) Quark-gluon matter (full QCD) Singlet free energy in full QCD (Nf=2+1) r g,u,d,s 163x4, p4fat3 action, mud/ms=0.1 RBC-Bielefeld Coll., hep-lat/0610041 Casimir scaling in full QCD (Nf=2) WHOT-QCD Coll., (Maezawa et al.,) In preparation Casimir scaling in full QCD (Nf=2) quark - anti-quark channel WHOT-QCD Coll., (Maezawa et al.,) In preparation quark-quark channel
© Copyright 2026 Paperzz