Angle Proof Worksheet #1 1. Given: B is the midpoint of AC A B Steps Given 1. B is the midpoint of AC 2. AB BC 3. AB = BC C Prove: AB = BC 2. Given: AD is the bisector of BAC B D A Reasons C Steps 1. AD is the bisector of 2. BAD CAD 3. m BAD m CAD Definition of Congruent Reasons BAC Given Definition of Congruent Prove: m BAD m CAD 3. Given: D is in the interior of BAC B D Steps 1. D is in the interior of BAC 2. m BAD m DAC m BAC Reasons Given C DAC m BAC Prove:A m BAD m 4. Given: m A m B 90 ; A C Steps 1. m A m B 90 2. A C 3. m A m C 4. Reasons Given Given Substitution steps 1 and 3 Prove: m C m B 90 5. Given: <1 and <2 form a straight angle Prove: m 1 m 2 180 Steps 1. <1 and <2 form a straight angle 2. m ABC 180 Reasons Given Definition of Straight Angle 3. Angle Addition Postulate 4. Substitution steps 2 and 3 6. Given: m EAC 90 E 1 2 A D Steps 1. m EAC 90 2. Given Angle Addition Postulate C 3. Substitution steps 1 and 2 B 3 Prove: m 1 m 2 m 3 90 Reasons 7. Given: m 1 45 and m 2 45 D B 1 2 A C Prove: AB is bisector of 8. Given: HKJ is a straight angle KI bisects Prove: DAC HKJ IKJ is a right angle Steps 1. m 1 45 and m 2 45 2. m 1 m 2 3. 1 2 4. Steps HKJ is a straight angle 1. 2. 3. KI bisects HKJ 4. IKJ IKH 5. m IKJ m IKH 6. 7. m IKJ m IKJ 180 8. 2(m IKJ ) 180 9. 10. IKJ is a right angle 9. Given: FD bisects EFC FC bisects DFB Prove: EFD CFB 10. Given: <WXY is a right angle 1 3 Prove: m 2 m 1 90 Reasons Given Substitution Prop. of = Definition of angle bisector Reasons Given Definition straight angle Given Defintion of congruent Angle Addition Postulate Substitution steps 2, 5, and 6 Simplify Division Prop of = Steps 1. FD bisects EFC ; FC bisects DFB 2. EFD DFC , DFC CFB 3. 4. m EFD m CFB 5. EFD CFB Steps 1. <WXY is a right angle 2. m WXY 90 3. m 2 m 3 m WXY 4. m 2 m 3 90 5. 1 3 6. m 1 m 3 7. m 2 m 1 90 Reasons Given Definition of Congruent Transitive Prop of = Reasons Given Substitution steps 2 & 3 Given Substitution steps 4 & 6
© Copyright 2026 Paperzz