Exponential Model bx Given ( x1 , y1 ), ( x2 , y2 ), ... , ( xn , yn ) best fit y ae to the data. (x , y ) n n (x , y ) 2 2 y ae bx (x , y ) i ( x1 , y1 ) i y i ae bxi Figure. Exponential model of nonlinear regression for y vs. x data 1 http://numericalmethods.eng.usf.edu Finding Constants of Exponential Model The sum of the square of the residuals is defined as n Sr yi ae i 1 bx 2 i Differentiate with respect to a and b n S r bxi bxi 2 y i ae e 0 a i 1 n S r bxi bxi 2 y i ae axi e 0 b i 1 2 http://numericalmethods.eng.usf.edu Finding Constants of Exponential Model Rewriting the equations, we obtain n yi e bxi i 1 n y i xi e i 1 3 bxi n a e 2bxi 0 i 1 n a xi e i 1 2bxi 0 http://numericalmethods.eng.usf.edu Finding constants of Exponential Model Solving the first equation for a yields n a yi e bxi i 1 n 2bxi e i 1 Substituting back into the previous equation n n y i xi e i 1 bxi yi e i 1 n bxi 2bxi e n 2bxi x e 0 i i 1 i 1 The constant b can be found through numerical methods such as bisection method. 4 http://numericalmethods.eng.usf.edu Example 1-Exponential Model Many patients get concerned when a test involves injection of a radioactive material. For example for scanning a gallbladder, a few drops of Technetium-99m isotope is used. Half of the Technetium-99m would be gone in about 6 hours. It, however, takes about 24 hours for the radiation levels to reach what we are exposed to in day-to-day activities. Below is given the relative intensity of radiation as a function of time. Table. Relative intensity of radiation as a function of time. t(hrs) 5 0 1 3 5 7 9 1.000 0.891 0.708 0.562 0.447 0.355 http://numericalmethods.eng.usf.edu Example 1-Exponential Model cont. The relative intensity is related to time by the equation t Ae Find: a) The value of the regression constants A and b) The half-life of Technetium-99m c) Radiation intensity after 24 hours 6 http://numericalmethods.eng.usf.edu Plot of data 7 http://numericalmethods.eng.usf.edu Constants of the Model Aet The value of λ is found by solving the nonlinear equation n n f i t i e ti i 1 ti e i i 1 n 2ti e n 2ti t e 0 i i 1 i 1 n A t e i i i 1 n 2 t i e i 1 8 http://numericalmethods.eng.usf.edu Setting up the Equation in MATLAB n n f i t i e i 1 ti ie i 1 n e ti n ti e 2ti i 1 2ti 0 i 1 t (hrs) 0 1 3 5 7 9 γ 1.000 0.891 0.708 0.562 0.447 0.355 9 http://numericalmethods.eng.usf.edu Setting up the Equation in MATLAB n n f i t i e i 1 ti ie i 1 n e i 1 ti n 2ti t e 0 i 2ti i 1 0.1151 t=[0 1 3 5 7 9] gamma=[1 0.891 0.708 0.562 0.447 0.355] syms lamda sum1=sum(gamma.*t.*exp(lamda*t)); sum2=sum(gamma.*exp(lamda*t)); sum3=sum(exp(2*lamda*t)); sum4=sum(t.*exp(2*lamda*t)); f=sum1-sum2/sum3*sum4; 10 http://numericalmethods.eng.usf.edu Calculating the Other Constant The value of A can now be calculated 6 A e i 1 6 ti i 2 ti e 0.9998 i 1 The exponential regression model then is 0.9998 e 11 0.1151t http://numericalmethods.eng.usf.edu Plot of data and regression curve 0.9998 e 12 0.1151t http://numericalmethods.eng.usf.edu Relative Intensity After 24 hrs The relative intensity of radiation after 24 hours 0.9998 e 0.115124 6.3160 10 2 This result implies that only 6.316 102 100 6.317% 0.9998 radioactive intensity is left after 24 hours. 13 http://numericalmethods.eng.usf.edu
© Copyright 2025 Paperzz