∀x ∀y (P x → (P y → ¬x = y)) ⊢ ¬∃x P x I will prove ∀x ∀y (Px → (P y → ¬x = y)) ⊢ ¬∃x Px. ∀x ∀y (P x → (P y → ¬x = y)) ⊢ ¬∃x P x I will prove ∀x ∀y (Px → (P y → ¬x = y)) ⊢ ¬∃x Px. By instantiating the variables x and y in the premiss with the same constant, one can show that any object satisfying P must be different from itself. Hence there can’t be such an object. ∀x ∀y (P x → (P y → ¬x = y)) ⊢ ¬∃x P x I will prove ∀x ∀y (Px → (P y → ¬x = y)) ⊢ ¬∃x Px. By instantiating the variables x and y in the premiss with the same constant, one can show that any object satisfying P must be different from itself. Hence there can’t be such an object. For the Natural Deduction proof I assume Pa (The plan is to apply ∃Elim later using the assumption ∃x Px). Then I derive from Pa and the premiss a contradiction. Then I assume ∃x Px and discharge Pa by applying ∃Elim. By applying ¬Intro I conclude ¬∃x Px. ∀x ∀y (P x → (P y → ¬x = y)) ⊢ ¬∃x P x ∀x ∀y (Px → (P y → ¬x = y)) This is the premiss. ∀x ∀y (P x → (P y → ¬x = y)) ⊢ ¬∃x P x ∀x ∀y (Px → (P y → ¬x = y)) ∀y (Pa → (P y → ¬a = y)) Pa → (Pa → ¬a = a) I apply ∀Elim twice using the same constant. ∀x ∀y (P x → (P y → ¬x = y)) ⊢ ¬∃x P x Pa ∀x ∀y (Px → (P y → ¬x = y)) ∀y (Pa → (P y → ¬a = y)) Pa → (Pa → ¬a = a) Later I will assume ∃x Px and show that this leads to a contradiction. So I assume Pa. . . ∀x ∀y (P x → (P y → ¬x = y)) ⊢ ¬∃x P x Pa and apply →Elim. ∀x ∀y (Px → (P y → ¬x = y)) ∀y (Pa → (P y → ¬a = y)) Pa → (Pa → ¬a = a) Pa → ¬a = a ∀x ∀y (P x → (P y → ¬x = y)) ⊢ ¬∃x P x Pa Pa This is repeated, ∀x ∀y (Px → (P y → ¬x = y)) ∀y (Pa → (P y → ¬a = y)) Pa → (Pa → ¬a = a) Pa → ¬a = a ∀x ∀y (P x → (P y → ¬x = y)) ⊢ ¬∃x P x Pa which gives me ¬a = a ∀x ∀y (Px → (P y → ¬x = y)) ∀y (Pa → (P y → ¬a = y)) Pa Pa → (Pa → ¬a = a) Pa → ¬a = a ¬a = a ∀x ∀y (P x → (P y → ¬x = y)) ⊢ ¬∃x P x Pa [a = a] This is an application of =Intro. ∀x ∀y (Px → (P y → ¬x = y)) ∀y (Pa → (P y → ¬a = y)) Pa Pa → (Pa → ¬a = a) Pa → ¬a = a ¬a = a ∀x ∀y (P x → (P y → ¬x = y)) ⊢ ¬∃x P x Pa [a = a] ∀x ∀y (Px → (P y → ¬x = y)) ∀y (Pa → (P y → ¬a = y)) Pa Pa → (Pa → ¬a = a) Pa → ¬a = a ¬a = a ¬∃x Px I apply ¬Intro to ∃x Px. I can’t discharge any assumption because I didn’t assume ∃x Px. ∀x ∀y (P x → (P y → ¬x = y)) ⊢ ¬∃x P x Pa [a = a] ∃x Px ¬∃x Px Following my plan, I assume ∃x Px. ∀x ∀y (Px → (P y → ¬x = y)) ∀y (Pa → (P y → ¬a = y)) Pa Pa → (Pa → ¬a = a) Pa → ¬a = a ¬a = a ∀x ∀y (P x → (P y → ¬x = y)) ⊢ ¬∃x P x [Pa] [a = a] ∃x Px ∀x ∀y (Px → (P y → ¬x = y)) ∀y (Pa → (P y → ¬a = y)) [Pa] Pa → (Pa → ¬a = a) Pa → ¬a = a ¬a = a ¬∃x Px ¬∃x Px This is a correct application of ∃Elim because the only undischarged assumption containing a is Pa and ¬∃x Px doesn’t contain a. So I can discharge the assumptions of Pa. ∀x ∀y (P x → (P y → ¬x = y)) ⊢ ¬∃x P x [Pa] [a = a] ∃x Px ∀x ∀y (Px → (P y → ¬x = y)) ∀y (Pa → (P y → ¬a = y)) [Pa] Pa → (Pa → ¬a = a) Pa → ¬a = a ¬a = a ¬∃x Px ¬∃x Px I still need to discharge the assumption ∃x Px. To this end I assume it and obtain a contradiction ∃x Px ∀x ∀y (P x → (P y → ¬x = y)) ⊢ ¬∃x P x ∀x ∀y (Px → (P y → ¬x = y)) ∀y (Pa → (P y → ¬a = y)) [Pa] Pa → (Pa → ¬a = a) Pa → ¬a = a ¬a = a [Pa] [a = a] [∃x Px] ¬∃x Px ¬∃x Px [∃x Px] ¬∃x Px Using ¬Intro I discharge both assumptions of ∃x Px and the proof is complete..
© Copyright 2026 Paperzz