Name
Date
Class
Practice B
LESSON
12-5 Mathematical Induction and Infinite Geometric Series
Determine whether each geometric series converges or diverges.
9 __
31…
81 ____
27 ___
1. ____
5
625
125
25
3 ___
9 ____
81 …
27 ____
2. 1 __
5
25
125
625
Diverges
Converges
Find the sum of each infinite geometric series, if it exists.
7 ___
7 …
7 ___
3. 7 __
4
16
64
4. 500 300 180 108 …
28
___
312.5
3
5.
4 3 1 __
4
__
k
6.
k1
99 __94 k
k1
⫺30.46
Does not exist
Write each repeating decimal as a fraction in simplest form.
_
_
_
7. 0.16
8. 0.016
9. 0.016
16
___
16
____
99
_
_
10. 0.045
16
____
999
_
11. 0.1
990
12. 0.123
1
___
1
__
41
____
22
9
333
Identify a counterexample to disprove each statement.
13. 2
n
n
14. n 3n
2
3
Possible answer: n ⫽ ⫺5
Possible answer: n ⫽ ⫺2
Solve.
15. Ron won a prize that pays $200,000 the first year and half of the
previous year’s amount each year for the rest of his life.
a. Write the first 4 terms of a series to represent the situation.
200,000 ⫹ 100,000 ⫹ 50,000 ⫹ 25,000 ⫹ …
b. Write a general rule for a geometric sequence that
models his prize each year.
c. Estimate Ron’s total prize in the first 10 years.
d. If Ron lives forever, what is the total of his winnings?
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
a207c12-5_pr.indd 36
36
a n ⫽ 200,000 0.5 n⫺1
$399,609.38
$400,000
Holt Algebra 2
12/29/05 6:46:33 PM
Process Black
*À>VÌViÊ
--"
£Óx -ATHEMATICAL)NDUCTIONAND)NFINITE'EOMETRIC3ERIES
*À>VÌViÊ
--"
£Óx -ATHEMATICAL)NDUCTIONAND)NFINITE'EOMETRIC3ERIES
$ETERMINEWHETHERTHEGEOMETRICSERIESCONVERGESORDIVERGES
$ETERMINEWHETHEREACHGEOMETRICSERIESCONVERGESORDIVERGES
ÚÚ
Ê{Ê
x
A &INDANDSIMPLIFYTHECOMMONRATIO
????
???
??
x
????
x
ÛiÀ}iÃ
???
x
??
???
?
?
iÃÊÌÊiÝÃÌ
ä°xÇÊÊä°ääxÇÊÊä°ääääxÇÊÊo
NN
*ÃÃLiÊ>ÃÜiÀ\ÊNÊÊÓ
Óää]äääÊÊ£ää]äääÊÊxä]äääÊÊÓx]äääÊÊo
ÚÚÚ
ÊÓÎÊÊ
B 7RITEAGENERALRULEFORAGEOMETRICSEQUENCETHAT
MODELSHISPRIZEEACHYEAR
C %STIMATE2ONSTOTALPRIZEINTHEFIRSTYEARS
D )F2ONLIVESFOREVERWHATISTHETOTALOFHISWINNINGS
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
ÎÎÎ
A 7RITETHEFIRSTTERMSOFASERIESTOREPRESENTTHESITUATION
ÚÚ
ÊxÊ
È
ÚÚÚÚ
Ê{£ÊÊÊ
*ÃÃLiÊ>ÃÜiÀ\ÊNÊÊx
?
ÚÚ
ÊÇÊ
ÚÚ
Ê£Ê
2ONWONAPRIZETHATPAYSTHEFIRSTYEARANDHALFOFTHE
PREVIOUSYEARSAMOUNTEACHYEARFORTHERESTOFHISLIFE
ÎÎ
?
ä
?
3OLVE
£ÊÊ
ÊÚÚÚ
?
£ÈÊÊÊ
ÊÚÚÚÚ
?
ÓÓ
A TOWRITETHEFRACTION
C 5SE3?????
R
ä°ä£
£ÈÊÊÊ
ÊÚÚÚÚ
N
N A 7RITETHEDECIMALASANINFINITESERIES
?
)DENTIFYACOUNTEREXAMPLETODISPROVEEACHSTATEMENT
?
?
ÚÚÚ
Ê£ÊÊÊ
B &INDTHECOMMONRATIO
zÊÎä°{È
ÚÚÚ
Ê£ÈÊÊ
7RITEEACHREPEATINGDECIMALASAFRACTIONINSIMPLESTFORM
iÃÊÌÊiÝÃÌ
Ç
Î
S D
K
> ??
K
7RITEEACHREPEATINGDECIMALASAFRACTIONINSIMPLESTFORM
????
????
???
??
x
ÚÚ
ÊÓÊ
S D
ÓÊ
ÊÚÚ
???
????
x
????
??
@
K
> ??
??
K
ÛiÀ}iÃ
A 4ESTTHESERIESFORCONVERGENCE
A ÓxÓ
TOFINDTHESUM B 5SETHEFORMULA3?????
R
????
x
????
x
??
???
ΣӰx
Î
@
x
x
ÓnÊÊÊ
ÊÚÚÚ
&INDTHESUMOFEACHINFINITEGEOMETRICSERIESIFITEXISTS
nää
ÛiÀ}iÃ
&INDTHESUMOFEACHINFINITEGEOMETRICSERIESIFITEXISTS
ÛiÀ}iÃ
ÛiÀ}iÃ
B 5SETHERATIOTODETERMINEWHETHERTHESERIES
ÛiÀ}iÃ
CONVERGESORDIVERGES
??
??
??
x
x
???
????
x
??
???
????
ÌÊ}iLÀ>ÊÓ
>Ê ÊNÊÊÓää]äääÊÊTä°xÊEÊN£Ê
zfÎ]Èä°În
f{ää]äää
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
ÌÊ}iLÀ>ÊÓ
*À>VÌViÊ
--"
£Óx -ATHEMATICAL)NDUCTIONAND)NFINITE'EOMETRIC3ERIES
,iÌi>V
,%33/.
£Óx -ATHEMATICAL)NDUCTIONAND)NFINITE'EOMETRIC3ERIES
&INDTHESUMOFEACHINFINITEGEOMETRICSERIESIFITEXISTS
!NINFINITEGEOMETRICSERIESHASINFINITELYMANYTERMS
x
x
ÚÚÚÚ
ÊÓxäÊÊÊ
ÓÈ
@
@
S D
K
> ??
??
K
iÃÊÌÊiÝÃÌ
7HENTHEPARTIALSUMAPPROACHESAFIXEDNUMBER
THESERIESISSAIDTOCONVERGE
S D
K
> ??
K
9OUADDSOMEOFTHETERMSOFANINFINITEGEOMETRICSERIESTOFINDAPARTIALSUMOFTHESERIES
n£
7HENTHEPARTIALSUMDOESNOTAPPROACHAFIXEDNUMBER
THESERIESISSAIDTODIVERGE
!GEOMETRICSERIESDIVERGES
ÊÊÚÚÚÚ
ÊÎää
Ê ÊÊ
Ç
WHENR
7RITEEACHREPEATINGDECIMALASAFRACTIONINSIMPLESTFORM
?
?
££
?
{ÊÊÊ
ÊÚÚÚ
xx
?
nÊ ÊÊ
ÊÚÚÚÚ
?
ÈänÈÊÊ
ÊÚÚÚÚÚ
£ÈÈx
4ODETERMINEWHETHERAGEOMETRICSERIESCONVERGESORDIVERGESCOMPARETHEABSOLUTEVALUE
OFTHECOMMONRATIOOFTHETERMSOFTHESERIESDENOTEDRTO
?
nÊÊÊ
ÊÚÚÚ
£££
ΣÊÊ
ÊÚÚÚ
xÊ
ÊÚÚ
ÓÓ
!GEOMETRICSERIES
CONVERGESWHENR
Ç
??
??
??
???
x
3TEP&INDTHECOMMONRATIO
3TEP&INDTHECOMMONRATIO
??
??
R??
5SEMATHEMATICALINDUCTIONTOPROVE
N
>
3TEP#OMPARERTO
3TEP#OMPARERTO
??
????????
?????
N > ????????
NSND N
KSKD
>
K
T
E
ÓÊ £Ê Ê
ÚÚÚÚÚÚ
Ê
ÊÊ ÓÊ Ê
ÀÊ
ÊÊ£\Ê
Ê
Ê
Ê
Ê
Ê£ÊvÊÌ
iÊÃÌ>ÌiiÌÊÃÊÌÀÕiÊvÀÊ
ÊÊ>]ÊÌ
iÊÊÊ ÚÚÚÚÚÚÚ
Ê Ó>Ê Ê
Êʰ
ÊÚÚÚÚÚ
T
E
KTKÊÊ£ÊEÊ >ÊÊ£
Ê £Ê ÊÊ£
K£ÊÊ
R???
??
R ??
R
3INCE??
3INCE
THESERIESCONVERGES
THESERIESDIVERGES
>£
ÓATAÊÊÓÊEÊÊÓ
Ó
ÓÊ
ÚÚÚÚÚÚÚ
ÊÚÚÚÚ
Ê Ó>Ê Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
ÊÊÊÚÚÚÚÚÚÚÚÚÚÚÚ
Ê ÊÊÚÚÚÚÚÚÚÚÚÚÚÚ
Ê
iÌÊÊÊ>ÊÊ£°ÊÊÊ ÊÊÊ T Ê EÊ
K KÊÊ£Ê Ê >ÊÊ£ ÊT>ÊÊ£ÊEÊT>ÊÊÓÊEÊ
ÊTAÊÊ£ÊEÊTAÊÊÓÊEÊ
K£Ê
>
$ETERMINEWHETHEREACHGEOMETRICSERIESCONVERGESORDIVERGES
??
???
???
??
T
EÊÓÊ
ÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚ
ÓÊTAÊÊ£ÊEÊ
ÊÊÊÚÚÚÚÚÚ
ÊÆÊ-ÊÊ ÚÚÚÚÚÚÚ
ÊÊÚÚÚÚÚÚÚÚÚÚÚ
Ê ÓÊ AÊÊ£Ê
Ê Ê
Ê
Ê Ê
Ê
ÊÊ ÓÊ Ê
Ê ÓNÊ
ʰ
ÊTAÊÊ£ÊEÊTAÊÊÓÊEÊ ÊTAÊÊ£ÊEÊÊ£ K£ÊÊKTKÊÊ£ÊEÊ NÊÊ£
>
R
??
SND N *ÃÃLiÊ>ÃÜiÀ\ÊÊÊ£
N N *ÃÃLiÊ>ÃÜiÀ\ÊÊÊ£
!MOVIEEARNEDMILLIONINTHEFIRSTWEEKTHATITWASRELEASED
)NEACHSUCCESSIVEWEEKSALESDECLINEDBYABOUT
Ê>ÊÊÊÈäÊÊTä°nÊEÊ£Ê]ÊÜ
iÀiÊÊ
B %STIMATETHEMOVIESTOTALSALESINTHEFIRSTWEEKS
>ÊÊÀi«ÀiÃiÌÃÊÃÊÊ
vÊ`>ÀÃ
zfÓ{°ÈÇÊ
C )FTHISPATTERNCONTINUEDINDEFINITELYWHATWOULDBE
THEMOVIESTOTALSALES
fÎääÊ
A 7RITEAGENERALRULEFORAGEOMETRICSEQUENCETHAT
MODELSTHEMOVIESSALESEACHWEEK
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
AK4up.indd 51
#OMPARERTO
??
DIVERGES
ÌÊ}iLÀ>ÊÓ
??
R
#OMPARERTO
CONVERGES
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
51
R
??
??
CONVERGES
x
??
#OMPARERTO
??
???
????
????
3OLVE
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
R
)DENTIFYACOUNTEREXAMPLETODISPROVEEACHSTATEMENT
x
#OMPARERTO
DIVERGES
(OLT!LGEBRA
Holt Algebra 2
12/29/05 6:29:17 PM
© Copyright 2026 Paperzz