Symmetry of Fermion Mixing
C.S. Lam
McGill and UBC, Canada
arXiv:0708.3665 (to appear in Phys. Lett)
Progress in particle physics relied heavily on
symmetry considerations
SU (3) F
SU (3)C U (1)Q SU (3)C SU (2) I U (1)Y SO(10)?
(mb
mt )
1936. “ Who ordered it ?”
What about the generation problem?
(mu
mt , me
m )
(horizontal global) symmetry for mass matrices
mixing of fermions
Models of Fermion Mixing
•
Pick a (global) horizontal symmetry group G .
S3 (83), A4 (91), S4 (11)
•
Assign IR to left-handed (L), right-handed (R), [ and heavy (H)]
fermions, and all the new Higgs fields
•
Construct G -invariant mass terms. Coupling consts h
•
Assign vacuum expectation values
•
Compute the mixing matrix from the mass matrices
•
Tune the parameters
h,
to break the symmetry
to get the desired mixing matrix
An Example (leptons)
Ma (hep-ph/0404199)
.
A4 [ IR : 3, 1, 1,1]
•
Pick a horizontal symmetry group G
•
Assign IR to left-handed (L), right-handed (R), [ and heavy (H)]
fermions, and all the new Higgs fields
L 3; eR 1, 1,1; e 3 Iso-doublet
Iso-triplet 3, 1, 1,1
•
Construct G -invariant mass terms. Coupling consts
•
Assign vacuum expectation values
h
to break the symmetry
e ve (1,1,1); 3 v (1,0,0)
h2
h1
M e ve h1 h2
h h 2
1 2
h3
h3 2
h3
a b c
M
a b c 2
d
•
Compute the mixing matrix from the mass matrices
•
Tune the parameters
h,
2
1
U
1
6
1
d
2
a b c
to get the desired mixing matrix
2
2
2
0
3
3
(b c)
A Systematic Study
•
Bottom-Up Approach:
given the mixing matrix U
• Trick: integrate out R and
H to study the effective Lmass matrices
†
u
†
d
†
e
M u M , M d M ; M e M , M
find G
• Top-Down Approach:
given G , find U
Bottom-Up Approach
M e M e† diag (me2 , m2 , m2 )
F
U T M U diag (m1 , m2 , m3 )
Gi
M u M u† diag (mu2 , mc2 , mt2 )
U † M d M d†U diag (md2 , ms2 , mb2 )
U (v1 , v2 , v3 )
M vi mi vi
residual symmetry
F diag (1 , 2 , 3 )
Non-degenerate
finite group
Gi I 2vi vi†
M d M d†vi mi2vi
Gi vi vi
[Gi , M ] 0
Gi2 1, G1 G2G3
n
G SU (3)
Partial vs Full
Fn I
[ F , M e M e† ] 0
Base independent !
Leptons
solar
atmospheric
reactor
0.44 1
s12 0.314 1 0.18
0.15
s1 0.333
s2 2
s1 0.50
0.41
0.22
2.3
s32 0.9 0.9
Fogli et al.
Harrison,Perkins,Scott
2
2
s3 0
2
1
U
1
6
1
2
2
2
2
0
3
3
full, partial
Tri-bimaximal mixing
The Leptonic List for n=1,2,3
G Z2 , G Z2 Z2
i
1
0
1
G {Z 2 Z 2 , D4 }, G
3
2
0,1,2
2
F degenerate
G G S 4 , H (12,3)
0
3
1
3
G A4
2
3
G S3 , H (6,3)
3
3
F non-degenerate
{Gi , F } Gni
2
1
U
1
6
1
2
2
2
0
3
3
H(6,3): 54 members
H(12,3): 216 members
finite or infinite list?
U discrete !!
Top-Down Approach
(Given a finite group G, find U )
•
G has to have an even order, with a 3-dim IR (exceptions)
•
must be invariant under F and Gi
• Number of parameters depends on the number of possible
May not be enough to give rise to realistic masses
Gi2 1
G has to have an even order, with a 3-dim IR (exceptions)
1
v 0
0
1
G
1
1
No 3-dim IR
G33 S3 , H (6,3)
2
1
U
1
6
1
2
2
2
0
3
3
1
v 0
0
1
G
0
v
1
G
must be invariant under F and Gi
L L C
L L C
An Example (leptons)
Ma (hep-ph/0404199)
•
Pick a horizontal symmetry group G
.
A4 [ IR : 3, 1, 1,1]
G32
•
Assign IR to left-handed (L), right-handed (R), [ and heavy (H)]
fermions, and all the new Higgs fields
L 3; eR 1, 1,1; e 3 Iso-doublet
Iso-triplet 3, 1, 1,1
•
Construct G -invariant mass terms. Coupling consts
•
Assign vacuum expectation values
h
to break the symmetry
e ve (1,1,1); 3 v (1,0,0)
h2
h1
M e ve h1 h2
h h 2
1 2
h3
h3 2
h3
a b c
M
a b c 2
d
•
Compute the mixing matrix from the mass matrices
•
Tune the parameters
h,
2
1
U
1
6
1
d
2
a b c
to get the desired mixing matrix
2
2
2
0
3
3
(b c)
0.2272
Quarks
0.0010
0.0010
0.2262
0.0014
0.0014
A 0.818 0.007
0.017
A 0.815 0.013
0.013
0.221
0.064
0.235
0.031
0.340
0.017
0.349
0.020
0.028
0.045
1 / 2
2
U
1 / 2
A 3 (1 i ) A 2
2
0.031
0.020
A ( i )
2
A
1
3
Remarks
•
Gisi only known numerically. It
is too hard to obtain a finite
horizontal group for three
generations.
G
{Gi , F } G
i
n
n
• First consider two generations
(Cabibbo mixing)
1 2
U
1 2
Cabibbo Mixing
1 2
U
c2 s2
G1
s
c
2
2
1
F
1
non-degenerate !
c2 s2
G1F
s
c
2 2
G21
c s
2
s
c
1
G1 , F | G12 , F 2 ,(G1F ) m Dm
c2 m s2 m
(G1F )
s2 m c2 m
m
D7
C
2m
0.2225
PDG:
0.2262 0.0014
0.2272 0.0010
CKM Mixing
• More hopeful to use a top-down approach (in
progress)
• A discrete number of mixing matrices results
• Use one CKM parameter to decide which U to
use, then the other three CKM paramters are
determined (a purely symmetry calculation !).
Conclusion
• A systematic tool to study the horizontal mixing, both
bottom-up and top-down G U
• The tri-bimaximal neutrino mixing is well understood
in both approaches
• There is an exciting possibility to determine 3/4 CKM
parameters if quark mixing also has a finite horizontal
group (under way).
Yu, Luo River, circa 2100 BCE
2
9
4
5
3
8
1
2
1
U
1
6
1
2
2
2
0
3
3
河圖洛書
7
6
The original 2-3 and magic symmetries
© Copyright 2026 Paperzz