Data Converters EECT 7327 Discrete-Time Signal Processing Professor Y. Chiu Fall 2014 Discrete-Time Signal Processing (A Review) –1– Data Converters EECT 7327 Discrete-Time Signal Processing Professor Y. Chiu Fall 2014 Sampling xc(t) xc(t) C-D CT x(n) 0 T 2T 3T 4T fclk x n = x c t = nT T t xc(nT) x(n) FT x c t ⇔ X c jΩ DT 0 X z = e jω ∞ = x n z n=-∞ –2– -n 1 ? 2 3 4 ↔ X c jΩ n Data Converters EECT 7327 Discrete-Time Signal Processing Professor Y. Chiu Fall 2014 Zero-Order Hold (ZOH) xc(nT) xc(t) 0 0 t T 2T 3T 4T xc(nT) T xSH(t) T t u(t) - u(t-T) T 1/T w 0 T 2T 3T 4T T 0 t T 1 ∞ x SH t = x c nT u t - nT - u t - nT - T T n=-∞ –3– t Data Converters EECT 7327 Discrete-Time Signal Processing Professor Y. Chiu Fall 2014 Sampling FT lim x SH t = FT x s t Area fixed xSH(t) w→0 1 ∞ = FT lim x c nT u t - nT - u t - nT - w w→0 w n=-∞ 0 1 ∞ 1 -s nT+w 1 = lim x c nT e -snT - e w→0 s s w n=-∞ t w→0 1- e -sw ∞ = lim x c nT e -snT w→0 sw n=-∞ Impulse train xs(t) ∞ xc(t)·δ(t-nT) = x c nT e n=-∞ -snT ∞ = x n z -n n=-∞ CT → Ω, DT → ω, 0 T 2T 3T 4T T t X z = e s = jΩ, z = e jω , ω = ΩT. jω ∞ = x n z n=-∞ –4– -n ↔ X s jΩ Data Converters EECT 7327 Discrete-Time Signal Processing Professor Y. Chiu Fall 2014 Sampling xc(t) xs(t) 0 t δ(t-nT) s(t) 0 xc(t)·δ(t-nT) 0 X s jΩ = ∞ X e jω = x n z -n T t 1 X c jΩ S jΩ 2π 2π 2π δ Ω kΩ , Ω = s s T k T 1 X s jΩ = X c Ω - kΩs T k FT n=-∞ = X s jΩ Ω= ω = T x s t = x c t s t = x c t δ t - nT t T T 2T 3T 4T st⇔ 1 X c Ω - kΩs ω T k Ω= T –5– Data Converters EECT 7327 Discrete-Time Signal Processing Professor Y. Chiu Fall 2014 Spectrum of Sampled Signal (Ωs>2ΩN) Xc(jΩ) -ΩN ΩN Ω S(jΩ) -3Ωs -2Ωs -Ωs Ωs 0 2Ωs 3Ωs Ω 2Ωs 3Ωs Ω Xs(jΩ) -3Ωs -2Ωs -Ωs 0 Ωs The spectrum of the sampled signal is periodic in Ωs=2π/T. –6– Data Converters EECT 7327 Discrete-Time Signal Processing Professor Y. Chiu Fall 2014 Spectrum of Sampled Signal (Ωs<2ΩN) Xc(jΩ) ΩN -ΩN Ω S(jΩ) -3Ωs -2Ωs -Ωs Ωs 0 2Ωs 3Ωs Ω 2Ωs 3Ωs Ω Xs(jΩ) -3Ωs • • -2Ωs -Ωs 0 Ωs Aliasing (folding) results in irreversible signal distortion. Can only be avoided by using sufficiently high sample rate, or bandlimit the input signal with a coarse, continuous-time filter – AAF. –7– Data Converters EECT 7327 Discrete-Time Signal Processing Professor Y. Chiu Fall 2014 Reconstruction Filter (Nyquist) Xs(jΩ) -3Ωs -2Ωs -Ωs Ωs 0 2Ωs 3Ωs Ω hr t = Hr(jΩ) sin πt / T πt / T ∞ -Ωs/2 Ωs/2 Ω x r t = x n hr t - nT n=-∞ ∞ Xr(jΩ) = x n n=-∞ -ΩN ΩN sin π t - nT / T π t - nT / T Ω Reconstruction filter = “smoothing” filter = “interpolation” filter –8–
© Copyright 2026 Paperzz