Mat 241 Semester Final - Key Fall, 2007 Name ___________________________ Directions: Show all work for each question and make sure your answers are clearly identified. You may use the back side of pages if needed. #1. (5 pts) Evaluate F dr exactly where F x, y, z e i xzj x y k z C and C is the curve given by: r t t , t , t ; 0 t 1 . 2 3 F x, y, z e z i xzj x y k ; r t t 2 , t 3 , t ;0 t 1 F r t e t i t 3 j t 2 t 3 k e t , t 3 , t 2 t 3 ; r t 2t ,3t 2 , 1 F r t r t e t , t 3 , t 2 t 3 2t ,3t 2 , 1 2te t 3t 5 t 2 t 3 t 1 1 t t6 t3 t4 F dr 2 te 3 t t t dt 2 te e dt 3 0 6 3 4 0 C 0 0 0 1 1 1 1 2 2 13 1 2 et 2 0 e e 12 e 2 3 4 11 4 12 e 1 1 t 5 2 1 1 3 0 #2. (2 pts) Find curlF at the point 2, 5 , exactly if 2 6 F x, y, z e x sin y cos z , e x cos y cos z , e x sin y sin z i curlF j k x y z x x x e sin y cos z e cos y cos z e sin y sin z e x cos y sin z e x cos y sin z , e x sin y sin z e x sin y sin z, e x cos y cos z e x cos y cos z curlF 0,0,0 0 x, y, z #3. (5 pts) Use the Divergence Theorem to calculate the surface integral F dS where F x, y, z x , y , z 3 3 3 and the surface, S, is the solid S bounded by the cylinder x y 1 and the planes z = 0 and z = 2. 2 2 F dS divFdV S E divF 3x 2 3 y 2 3z 3 3 x 2 y 2 z 2 2 1 2 2 1 2 2 1 z 3r 3 8 F dS 3 r z rdzdrd 3 r z drd 3 2r r drd S 0 3 3 0 0 0 0 0 0 0 2 2 1 2 2 3 2 r 4 4r 2 33 66 1 4 3 d 3 d d 2 3 0 2 3 6 0 6 0 0 11 #4. (5 pts) Use Stokes’ Theorem to evaluate F dr where C F x, y, z xy, yz , zx and C is the triangle with vertices (1,0,0), (0,1,0), and (0,0,1) oriented counterclockwise as viewed from above. F x, y, z xy, yz , zx curlF i j x xy y yz k 0 y i z 0 j 0 x k z zx F * y, z , x ; P y, Q z , R x g x, y z 1 x y; g g 1, 1 x y g g P x Q y R y z x , F dr curlF dS C S g g g g P Q R dA P Q R dA x y x y D D 1 1 x 1 1 x 1 1 x 0 0 0 0 0 0 y z x dydx y 1 x y x dydx 1dydx 1 x2 1 x dx x 2 0 0 1 2 1 #5. Let F x, y ye xy 1 i xe xy j . A. (1 pt) Show that F is a conservative vector field. F x, y ye xy 1 i xe xy j P Q yxe xy e xy ; yxe xy e xy y x P Q F conservative on the simply connected curve y x B. (1 pt) Find a potential function for F . f x ye xy 1; f y xe xy By inspection : f ( x, y ) e xy x C. (2 pts) Find the work performed by the vector field on a particle that moves along the sawtooth curve represented by the parametric equations: x(t ) t sin 1 sin t y (t ) 2sin 1 sin t 0 t 8 We use the fundamental theorem for line integrals. x(0) 0, y (0) 0 : x(8 ) 8 , y 0 ; ( x, y ) (0,0) & 8 ,0 fy 8 ,0 f 0, 0 e0 8 e0 0 8 1 x 5 -1 10 15 20 25 xy 4 2 3 #6. (5 pts) Compute dx x y dy, where C is the closed curve 2 C figure shown below (all tick marks represent 1 unit). This is an example where Green's Theorem may be applied. xy 4 Q P 2 3 dx x y dy C 2 D x y dA 1 1 2 xy 1 1 x 2 1 3 1 2 xy dydx 4 3 1 1 x 2 1 1 2 1 2 x 3 x 5 dx 0 1 The integrand is odd! see page 420. 4 2 -5 5 -2 -4 -6 xy dydx x x 1 x 2 dx 3 #7. ( 5 pts) In HW set 9 you found the volume of an ice-cream cone shaped solid bounded by the hemisphere z 8 x y and the cone 2 2 z x2 y2 . Determine the Flux through the solid if F x, y, z xy i yz j x zk . 2 2 2 We ' ll use the divergence theorem. F x, y, z xy 2i yz 2 j x 2 zk divF y 2 z 2 x 2 The intersection of the two surfaces is: z 8 x2 y 2 ; z x2 y 2 x2 y 2 8 x2 y 2 C : x2 y 2 4 now, F dS divFdV S E divFdV x E 2 y 2 z 2 dV E 4 sin d d d 0 0 0 2 4 0 0 128 2 5 2 2 sin d d d 8 5 5 sin d d d 0 128 2 5 2 4 sin d d 0 0 2 128 2 2 256 2 2 cos d 1 d 1 0 0 5 2 5 2 0 2 4 256 2 256 5 5 256 2 1 5 0 0 0 2 4 8 2 4 8
© Copyright 2026 Paperzz