Study Material for Class XII Maths

7KENDRIYA VIDYALAYA SANGTHAN, AHMEDABAD REGION
CLASS XII
STUDY MATERIAL
CONTINUITY
π‘Žπ‘₯ + 1, 𝑖𝑓 π‘₯ ≀ 3
is continuous at x=3, find a relation between a and b.
𝑏π‘₯ + 3, 𝑖𝑓 π‘₯ > 3
π‘Žπ‘₯ + 1, 𝑖𝑓 π‘₯ ≀ 3
Solution: As f(x)= {
is continuous at x=3
𝑏π‘₯ + 3, 𝑖𝑓 π‘₯ > 3
1. If f(x)= {
∴ lim+ 𝑓(π‘₯)= f(3)
π‘₯β†’3
3b+3 = 3a + 1
a-b = 2/3
π‘˜(π‘₯ 2 βˆ’ 2π‘₯), π‘₯ ≀ 0
is continuous at x=0, find the value of k, if possible. Also
4π‘₯ + 1,
π‘₯>0
discuss continuity at x=1.
π‘˜(π‘₯ 2 βˆ’ 2π‘₯), π‘₯ ≀ 0
Solution: As, f(x)={
is continuous at x=0
4π‘₯ + 1,
π‘₯>0
∴ lim+ 𝑓(π‘₯)= f(0)
2. f(x)={
π‘₯β†’0
1= k(0)
1=0 which is not possible for any value of k
lim 𝑓(π‘₯)= f(1)
π‘₯β†’1
5=5
for all values of k , f(x) is continuous at x = 1
π‘˜π‘π‘œπ‘ π‘₯
3. If
f(x)= {
πœ‹βˆ’2π‘₯
,
3,
𝑖𝑓 π‘₯ =
Solution:
πœ‹
limπœ‹ 𝑓(π‘₯)= f( 2 )
π‘₯β†’
2
.limπœ‹
π‘₯β†’
2
πœ‹
2
πœ‹
2( βˆ’π‘₯)
2
π‘˜π‘ π‘–π‘›( βˆ’π‘₯)
k/2 = 3k = 6
𝑖𝑓 π‘₯ β‰ 
=3
πœ‹
2
πœ‹
2
πœ‹
is continuous at x=2 , find the value of k.
π‘˜π‘₯ + 1, 𝑖𝑓 π‘₯ ≀ πœ‹
4. If, f(x)= {
is continuous at x=πœ‹, find the value of k.
π‘π‘œπ‘ π‘₯,
𝑖𝑓 π‘₯ > πœ‹
Solution:
π‘˜π‘₯ + 1, 𝑖𝑓 π‘₯ ≀ πœ‹
As f(x)= {
is continuous at x=πœ‹
π‘π‘œπ‘ π‘₯,
𝑖𝑓 π‘₯ > πœ‹
∴ lim+ 𝑓(π‘₯)= f(πœ‹)
π‘₯β†’πœ‹
. lim+π‘π‘œπ‘ π‘₯ = k πœ‹+1
π‘₯β†’πœ‹
-1 = k πœ‹+1
K = -2/ πœ‹
5, 𝑖𝑓 π‘₯ ≀ 2
5. If, f(x)= {π‘Žπ‘₯ + 𝑏, 2 < π‘₯ < 10 is continuous function. Find the values of a and b.
21, 𝑖𝑓 π‘₯ β‰₯ 10
Solution:
5, 𝑖𝑓 π‘₯ ≀ 2
As f(x)= {π‘Žπ‘₯ + 𝑏, 2 < π‘₯ < 10is continuous function.
21, 𝑖𝑓 π‘₯ β‰₯ 10
∴ lim+ 𝑓(π‘₯)= f(2)
π‘₯β†’2
∴ lim+ π‘Žπ‘₯ + 𝑏=5
π‘₯β†’2
2a+b = 5…(1)
∴ limβˆ’ 𝑓(π‘₯)= f(10)
π‘₯β†’10
∴ limβˆ’ π‘Žπ‘₯ + 𝑏 = 21
π‘₯β†’10
10a+b = 21… (2)
From equation 1 and 2,
1βˆ’π‘π‘œπ‘ π‘₯
6. If,
f(x)={
π‘˜π‘₯ 2
,
3,
a=2, b=1
𝑖𝑓 π‘₯ β‰  0
𝑖𝑓 π‘₯ = 0
is continuous at x=0, find the value of k.
Solution:
1βˆ’π‘π‘œπ‘ π‘₯
As, f(x)={
π‘˜π‘₯ 2
3,
,
𝑖𝑓 π‘₯ β‰  0
𝑖𝑓 π‘₯ = 0
is continuous at x=0
lim 𝑓(π‘₯)= f(0)
π‘₯β†’0
.lim
π‘₯
2
π‘₯2
2𝑠𝑖𝑛2
π‘₯β†’0 4π‘˜
=3
4
1
.2π‘˜ = 3
K =1/6
π‘₯ 5 βˆ’25
7. If,
f(x)= {
π‘₯βˆ’2
,
𝑖𝑓 π‘₯ β‰  2
π‘˜,
𝑖𝑓 π‘₯ = 2
is continuous at x= . Fnd the value of k.
Solution:
π‘₯ 5 βˆ’25
As f(x)= {
,
π‘₯βˆ’2
𝑖𝑓 π‘₯ β‰  2
π‘˜,
𝑖𝑓 π‘₯ = 2
is continuous at x=
∴ lim 𝑓(π‘₯)= f(2)
π‘₯β†’2
. lim
π‘₯ 5 βˆ’25
=k
π‘₯βˆ’2
π‘₯β†’2
5(24) = k
K = 80
sin(π‘₯βˆ’2)
8. If, f(x)= {
π‘₯βˆ’2
π‘˜,
,
𝑖𝑓 π‘₯ β‰  2
𝑖𝑓 π‘₯ = 2
is continuous at x= . Find the value of k.
Solution:
sin(π‘₯βˆ’2)
As f(x)= {
π‘₯βˆ’2
π‘˜,
,
𝑖𝑓 π‘₯ β‰  2
𝑖𝑓 π‘₯ = 2
is continuous at x=
∴ lim 𝑓(π‘₯)= f(2)
π‘₯β†’2
.lim
sin(π‘₯βˆ’2)
π‘₯β†’2
π‘₯βˆ’2
=k
K=1
𝑒 π‘₯ βˆ’1
9. If, f(x)= { π‘₯
π‘˜,
Solution:
,
𝑖𝑓 π‘₯ β‰  0
𝑖𝑓 π‘₯ = 0
is continuous at x=0. Find the value of k
𝑒 π‘₯ βˆ’1
As f(x)= { π‘₯
π‘˜,
,
𝑖𝑓 π‘₯ β‰  0
𝑖𝑓 π‘₯ = 0
is continuous at x=0
∴ lim 𝑓(π‘₯)= f(0)
π‘₯β†’0
.lim
𝑒 π‘₯ βˆ’1
π‘₯β†’0
π‘₯
=k
1=k
10. Show that f(x)= |π‘₯ βˆ’ 3| is continuous but not differentiable at x=3
Solution:
As, f(x)= {
βˆ’π‘₯ + 3 𝑖𝑓 π‘₯ < 3
π‘₯ βˆ’ 3, 𝑖𝑓 π‘₯ β‰₯ 3
at x=3
lim 𝑓(π‘₯)= lim+ 𝑓(π‘₯) =f(3)
π‘₯β†’3βˆ’
π‘₯β†’3
lim -(3-h)+3 = lim (3+h)-3= 0
β„Žβ†’0
β„Žβ†’0
0=0=0
∴ continuous at x=3
. 𝐿. 𝐻. 𝐷 = lim
β„Žβ†’0
R.H.D = lim
β„Žβ†’0
𝑓(3βˆ’β„Ž)βˆ’π‘“(3)
βˆ’β„Ž
𝑓(3+β„Ž)βˆ’π‘“(3)
β„Ž
=
= lim
β„Žβ†’0
lim
βˆ’3+β„Ž+3
β„Žβ†’0
βˆ’β„Ž
3+β„Žβˆ’3
=1
β„Ž
As L.H.D β‰  R.H.D
∴ f(x) is not differentiable at x=3.
= -1
QUESTION BANK HIGHER ORDER THINKING SKILL
1
Solution:
2
Solution:
3
Solution:
4
Solutions:
5
Solution:
6
Solution:
7
Solution:
8
Solution:
9
Solution:
10
Solution:
DIFFERENTIABILITY
QUESTIONS ON HIGHER ORDER THINKING SKILL
1.
πœƒ
𝑑𝑦
2
π‘‘πœƒ
If x = a(cosπœƒ + log tan ) and y =a sin πœƒ, find the value of
Soln: Y = a sinπœƒ
𝑑𝑦
π‘‘πœƒ
𝑑π‘₯
π‘‘πœƒ
= a cosπœƒ
= a(-sinπœƒ +
πœƒ
2
πœƒ
𝑠𝑖𝑛
2
π‘π‘œπ‘ 
.
1
πœƒ
2
π‘π‘œπ‘  π‘π‘œπ‘ 
1
πœƒ
2
. 2)
πœ‹
, at πœƒ = .
4
1βˆ’π‘ π‘–π‘›2 πœƒ
)
π‘ π‘–π‘›πœƒ
= a(-sinπœƒ +
1
)
π‘ π‘–π‘›πœƒ
𝑑𝑦
𝑑π‘₯
π‘ π‘–π‘›πœƒ
π‘Ž π‘π‘œπ‘ πœƒ.π‘π‘œπ‘ πœƒ
=
π‘Ž π‘π‘œπ‘ πœƒ
1
𝑑𝑦
(π‘‘πœƒ)
πœƒ=
βˆ—
=a(
=
π‘Ž π‘π‘œπ‘ 2 πœƒ
π‘ π‘–π‘›πœƒ
= tanπœƒ
=1
πœ‹
4
𝑑𝑦
2. Find,𝑑π‘₯ , when a function is given by
x=
𝑠𝑖𝑛3 𝑑
βˆšπ‘π‘œπ‘ 2𝑑
, y=
βˆšπ‘π‘œπ‘ 2𝑑
SOLN: x=
𝑑π‘₯
. 𝑑𝑑 =
π‘π‘œπ‘ 3 𝑑
𝑠𝑖𝑛3 𝑑
βˆšπ‘π‘œπ‘ 2𝑑
, y=
π‘π‘œπ‘ 3 𝑑
βˆšπ‘π‘œπ‘ 2𝑑
𝑠𝑖𝑛2 𝑑 π‘π‘œπ‘ π‘‘(2π‘π‘œπ‘ 2𝑑+1) 𝑑𝑦 π‘π‘œπ‘ 2 𝑑 𝑠𝑖𝑛𝑑(1βˆ’2π‘π‘œπ‘ 2𝑑)
(π‘π‘œπ‘ 2𝑑)3/2
, 𝑑𝑑 =
(π‘π‘œπ‘ 2𝑑)3/2
𝑑𝑦
.𝑑π‘₯ = cot t
𝑑𝑦
βˆ’1
3. if π‘₯√1 + 𝑦 + π‘¦βˆš1 + π‘₯=0 then prove that𝑑π‘₯ = (1+π‘₯)2
1. soln: π‘₯√1 + 𝑦 + π‘¦βˆš1 + π‘₯=0
.π‘₯√1 + 𝑦= -π‘¦βˆš1 + π‘₯
βˆ’π‘₯
. y=1+π‘₯
𝑑𝑦
βˆ’1
.𝑑π‘₯ =(1+π‘₯)2
4. if (π‘₯ βˆ’ π‘Ž)2 + (𝑦 βˆ’ 𝑏)2 = 𝑐 2 then prove that
3
𝑑𝑦 2
) ]2
𝑑π‘₯
𝑑2 𝑦
𝑑π‘₯2
[1+(
soln: (π‘₯ βˆ’ π‘Ž)2 + (𝑦 βˆ’ 𝑏)2 = 𝑐 2
𝑑2 𝑦
1+(y-b)
𝑑π‘₯ 2
𝑑𝑦
+( )2 =0
𝑑π‘₯
𝑑2 𝑦
.𝑑π‘₯ 2 = -(1+y12)
.
3
𝑑𝑦 2
) ]2
𝑑π‘₯
𝑑2 𝑦
𝑑π‘₯2
[1+(
=-
(1+𝑦12 )3/2
(1+𝑦12 )
= - (1 + 𝑦12 )1/2=-(𝑐 2 )1/2= -c
5. If y = sinβˆ’1 π‘₯ , prove that ( 1 - π‘₯ 2 ) 𝑦2 - x 𝑦1 = 0.
is independent of a and b
Soln: If y = sinβˆ’1 π‘₯ ,
𝑦1 =
1
=>
√1βˆ’ π‘₯ 2
2
(1 βˆ’ π‘₯ 2 )𝑦1 2 = 1
οƒ° ( 1 - π‘₯ ) 𝑦2 - x 𝑦1 = 0.
𝑑2 𝑦
𝑑𝑦
6. If y= sin(log π‘₯) prove that π‘₯ 2 𝑑π‘₯ 2 + π‘₯ 𝑑π‘₯ + 𝑦 = 0
Soln: We have 𝑦 = sin(log π‘₯)
Diff. w.r.t x,
𝑑𝑦
π‘₯ 𝑑π‘₯ = cos(log π‘₯)
Again diff. w.r.t x
π‘₯
𝑑2 𝑦
𝑑π‘₯ 2
+
𝑑𝑦
= βˆ’ sin(log π‘₯) βˆ™
𝑑π‘₯
𝑑2 𝑦
,π‘₯ 2 𝑑π‘₯ 2
1
π‘₯
𝑑𝑦
+ π‘₯ 𝑑π‘₯ + 𝑦 = 0
1
1
7. Find dy/dx, if y =eӨ(  - )and x =e-Ө (  + )


Hence
Soln: Differentiating β€˜y’ w.r.t.  we get
dy
1 οƒΆ
1οƒΆ


ο€½ e 1  2 οƒ·  e   ο€­ οƒ·
d

  οƒΈ

οƒž
  3  2  1 οƒΆ
dy
ο€½ e 
οƒ· ο€­ ο€­ ο€­ ο€­ ο€­ 1
d
2

οƒΈ
Differentiating β€˜x’ w.r.t. 
dx
1 οƒΆ
1οƒΆ


ο€½ e  1 ο€­ 2 οƒ· ο€­ e     οƒ·
d

  οƒΈ

οƒž
8.
οƒž
  3   2 ο€­   1 οƒΆ
dx
ο€½ e 
οƒ· ο€­ ο€­ ο€­ ο€­ ο€­  2
d
2

οƒΈ
dy  e ( 3   2    1 οƒΆ
οƒ· , from(1)and (2)

dx  e    3   2 ο€­   1 οƒ·

οƒΈ
If y = x + tanx than prove that Cos2x
Soln:
d2y
– 2y +2x = 0
dx 2
dy
d2y
ο€½ 1  sec2 x οƒž 2 ο€½ 2sec x(sec x tan x)
dx
dx
= 2sec2 x tan x
Now cos 2 x
d2y
ο€­ 2 y  2 x ο€½ cos 2 x(2sec 2 x tan x) ο€­ 2( x  tan x)  2 x
2
dx
=0
9.
If y= sinβˆ’1 [
5π‘₯+12√1βˆ’π‘₯ 2
13
soln: y = sinβˆ’1 [5π‘₯
+
13
], find
𝑑𝑦
𝑑π‘₯
12√1βˆ’π‘₯ 2
13
.
]
Y = sinβˆ’1 [sin 𝛼. π‘π‘œπ‘ πœƒ + π‘π‘œπ‘ π›Ό. π‘ π‘–π‘›πœƒ]
Y = sinβˆ’1 (sin(πœƒ + 𝛼))
Y=πœƒ+𝛼
5
Y = cosβˆ’1 π‘₯ + sinβˆ’1 13
𝑑𝑦
𝑑π‘₯
=
βˆ’1
√1+π‘₯ 2
√1+π‘₯ 2 βˆ’βˆš1βˆ’π‘₯ 2
10. Differentiate tanβˆ’1 √1+π‘₯2
+√1βˆ’π‘₯ 2
√1+π‘₯ 2 βˆ’βˆš1βˆ’π‘₯ 2
Soln: y= tanβˆ’1 √1+π‘₯2
+√1βˆ’π‘₯ 2
√1+π‘₯ 2 βˆ’βˆš1βˆ’π‘₯ 2
y= tanβˆ’1 √1+π‘₯2
= tanβˆ’1 [
𝑑𝑦
1
cos πœƒβˆ’sin πœƒ
cos πœƒ+sin πœƒ
βˆ’1
= 2 . √1βˆ’π‘₯ 4 . 2π‘₯ =
𝑑π‘₯
𝑑𝑧
𝑑π‘₯
∴
+√1βˆ’π‘₯ 2
=
𝑑𝑦
𝑑𝑧
βˆ’1
√1βˆ’π‘₯ 4
with respect to cos βˆ’1 π‘₯ 2 .
and z= cos βˆ’1 π‘₯ 2 .
, put x2=cos 2πœƒ
] = tanβˆ’1 [
βˆ’1
√1βˆ’π‘₯4
1βˆ’π‘‘π‘Žπ‘›πœƒ
1+π‘‘π‘Žπ‘›πœƒ
πœ‹
πœ‹
1
4
4
2
] = tan-1[tan( βˆ’ πœƒ)]= βˆ’ πœƒ= cos βˆ’1 π‘₯ 2
. π‘₯.
βˆ’2π‘₯
. 2π‘₯ = √1βˆ’π‘₯ 4 .
1
= 2.
QUESTIONS
1.
𝑑𝑦
if cos y = x cos(a+y) then prove that 𝑑π‘₯ =
π‘π‘œπ‘ 2 (π‘Ž+𝑦)
𝑑𝑦
sin π‘Ž
π‘π‘œπ‘ 2 (π‘Ž+𝑦)
soln : if cos y = x cos(a+y) then prove that 𝑑π‘₯ =
π‘π‘œπ‘ π‘¦
X= cos(π‘Ž+𝑦)
𝑑π‘₯
.𝑑𝑦=
βˆ’siny cos(a+y)+sin(π‘Ž+𝑦)π‘π‘œπ‘ π‘¦ 𝑑𝑦
π‘π‘œπ‘ 2 (π‘Ž+𝑦)
.𝑑π‘₯ =
π‘π‘œπ‘ 2 (π‘Ž+𝑦)
sin π‘Ž
sin π‘Ž
1. if y = 𝑒 π‘Žπ‘π‘œπ‘ 
βˆ’1 π‘₯
𝑑2 𝑦
𝑑𝑦
then show that (1-x2)𝑑π‘₯ 2 - x𝑑π‘₯ - π‘Ž2 𝑦 = 0
solution:
𝑑𝑦
𝑑π‘₯
= 𝑒 π‘Žπ‘π‘œπ‘ 
βˆ’π‘Ž
βˆ’1 π‘₯
√1βˆ’π‘₯ 2
𝑑2 𝑦
π‘₯
𝑑𝑦
√1 βˆ’ π‘₯ 2 𝑑π‘₯ 2 - √1βˆ’π‘₯2 𝑑π‘₯ = 𝑒 π‘Žπ‘π‘œπ‘ 
𝑑2 𝑦
βˆ’π‘Ž2
βˆ’1 π‘₯
√1βˆ’π‘₯2
𝑑𝑦
(1-x2)𝑑π‘₯ 2 - x𝑑π‘₯ - π‘Ž2 𝑦 = 0
2. If y = 500𝑒 7π‘₯ + 600𝑒 βˆ’7π‘₯ , prove that
𝑑2 𝑦
𝑑π‘₯ 2
- 49y = 0.
Soln: y = 500𝑒 7π‘₯ + 600𝑒 βˆ’7π‘₯ ,
𝑑𝑦
𝑑π‘₯
= 7 ( 500𝑒 7π‘₯ - 600𝑒 βˆ’7π‘₯ )
𝑑2 𝑦
= 49 (500𝑒 7π‘₯ + 600𝑒 βˆ’7π‘₯ ) = 49 y
𝑑π‘₯ 2
𝑑2 𝑦
𝑑𝑦
3. If y = 3 cos ( log x ) + 4 sin ( log x ) , show that π‘₯ 2 𝑑π‘₯ 2 + x𝑑π‘₯ + y = 0.
Soln:
𝑑𝑦
y = 3 cos ( log x ) + 4 sin ( log x ) ,
1
1
= -3 sin log x .π‘₯+ 4cos log x . π‘₯
𝑑π‘₯
𝑑𝑦
x 𝑑π‘₯ = -3 sin log x + 4 cos log x
x
𝑑2 𝑦
𝑑π‘₯ 2
+
𝑑𝑦
𝑑π‘₯
= - ( 3 cos ( log x ) + 4 sin ( log x ) ) = -y
𝑑2 𝑦
𝑑𝑦
π‘₯ 2 𝑑π‘₯ 2 + x𝑑π‘₯ + y = 0.
Hence ,
4. If y = tanβˆ’1 π‘₯ , prove that ( 1 + π‘₯ 2 ) 𝑦2 + 2x 𝑦1 = 0.
Soln :y = tanβˆ’1 π‘₯ ,
1
(1 + π‘₯ 2 ) 𝑦1 = 1
𝑦1 =
1+ π‘₯ 2
=>
(1 + π‘₯ 2 ) 𝑦2 + 2x𝑦1 = 0
5. Find
𝑑2 𝑦
𝑑π‘₯ 2
=>
, if x = a cost , y = b sin t.
Soln: x = a cost , y = b sin t.
𝑑π‘₯
𝑑𝑑
𝑑𝑦
= βˆ’π‘Ž sin 𝑑
,
𝑑𝑦
𝑑𝑑
= 𝑏 cos 𝑑
𝑏
= - π‘Ž cot 𝑑
𝑑π‘₯
𝑑2 𝑦
𝑑π‘₯ 2
=
𝑏
π‘Ž
π‘π‘œπ‘ π‘’π‘ 2 𝑑 .
𝟐
1
βˆ’π‘Ž sin 𝑑
π’…π’š
6. If y = (log x)cos x + π’™π’™πŸ +𝟏
, find
βˆ’πŸ
𝒅𝒙
Soln: y=u+v
𝑏
= -π‘Ž2 π‘π‘œπ‘ π‘’π‘ 3 𝑑
log u = cosx log(logx)
1 𝑑𝑒
𝑒 𝑑π‘₯
𝑑𝑒
1
1
= π‘π‘œπ‘ π‘₯. log π‘₯ . π‘₯ + log(π‘™π‘œπ‘”π‘₯) (βˆ’ sin π‘₯)
1
1
= (log π‘₯)cos π‘₯ (π‘π‘œπ‘ π‘₯. log π‘₯ . π‘₯ βˆ’ log(π‘™π‘œπ‘”π‘₯) (sin π‘₯))
𝑑π‘₯
𝑑𝑣
=
𝑑π‘₯
𝑑𝑦
(π‘₯ 2 βˆ’1 ).2π‘₯βˆ’(π‘₯ 2 +1).2π‘₯
(π‘₯ 2 βˆ’1)2
βˆ’ 4π‘₯
= (π‘₯ 2 βˆ’1)2
1
1
βˆ’ 4π‘₯
= (log π‘₯)cos π‘₯ (π‘π‘œπ‘ π‘₯. log π‘₯ . π‘₯ βˆ’ log(π‘™π‘œπ‘”π‘₯) (sin π‘₯)) + (π‘₯ 2 βˆ’1)2
𝑑π‘₯
7. If xy= π’†π’™βˆ’π’š , prove that
π’…π’š
𝒅𝒙
=
π₯𝐨𝐠 𝒙
(𝟏+π₯𝐨𝐠 𝒙)𝟐
Soln : Y log x = x-y
Y(1+log x)=x
Y=
𝑑𝑦
𝑑π‘₯
8.
=
(1+log π‘₯).1βˆ’π‘₯.
1
π‘₯
(1+π‘™π‘œπ‘”π‘₯)2
π₯𝐨𝐠 𝒙
= (𝟏+π₯𝐨𝐠
𝒙)𝟐
𝝅
π’…πŸ π’š
𝟐
π’…π’•πŸ
If x= a(cos t + t sin t) and y= a(sin t – t cos t) , 0<t< , find
Sol :
π’…π’š
𝒅𝒙
π’…πŸ 𝒙
π’…π’•πŸ
π’…πŸ π’š
π’…π’•πŸ
π’…πŸ π’š
π’…π’™πŸ
𝒅𝒙
𝒅𝒕
,
π’…πŸ 𝒙
π’…π’•πŸ
and
= 𝒂(βˆ’π’”π’Šπ’ 𝒕 + π’”π’Šπ’ 𝒕 + 𝒕 𝒄𝒐𝒔 𝒕) = 𝒂𝒕 𝒄𝒐𝒔 𝒕
= 𝒂(𝒄𝒐𝒔𝒕 βˆ’ 𝒄𝒐𝒔 𝒕 + 𝒕. π’”π’Šπ’π’•) = 𝒂𝒕 π’”π’Šπ’π’•
𝒅𝒕
π’…π’š
9.
𝒙
𝟏+π’π’π’ˆ 𝒙
= 𝒕𝒂𝒏 𝒕
= 𝒂(βˆ’π’• π’”π’Šπ’π’• + 𝒄𝒐𝒔 𝒕)
= 𝒂(𝒕 𝒄𝒐𝒔 𝒕 + π’”π’Šπ’ 𝒕)
= sec2t .
𝒅𝒕
𝒅𝒙
If y = π­πšπ§βˆ’πŸ [
= sec2t .
𝟏
𝒂𝒕 𝒄𝒐𝒔 𝒕
=
√𝟏+𝐬𝐒𝐧𝟐 𝒙+ βˆšπŸβˆ’π¬π’π§πŸ 𝒙
𝟏
π’‚π’•π’„π’π’”πŸ‘ 𝒕
] , find
.
π’…π’š
𝒅𝒙
√𝟏+π’”π’Šπ’πŸπ’™ βˆ’ βˆšπŸβˆ’π¬π’π§ πŸπ’™
-1 (π’”π’Šπ’ 𝒙+𝒄𝒐𝒔 𝒙)+ (π’”π’Šπ’ π’™βˆ’π’„π’π’” 𝒙)
Soln: Y= tan [ (π’”π’Šπ’π’™+
𝒄𝒐𝒔 𝒙)βˆ’(π’”π’Šπ’ π’™βˆ’π’„π’π’” 𝒙)
.
]
= tan-1[𝒕𝒂𝒏 𝒙] = x
π’…π’š
𝒅𝒙
= 𝟏.
DIFFERENTIAL AND APPROXIMATIONS
QUS:1.
Using Differential ,find the approximate value of √25.3.
π’…πŸ π’š
π’…π’™πŸ
.
SOL
QUS:2.
1
Using Differential ,find the value of (81)4
SOL:
QUS:3
1
Using Differential ,find the approximate value of (0.999)10
SOL:
QUS:4
SOL:
QUS:5
?
SOL:
QUS:6
SOL:
QUS:7
1
Using Differential ,find the value of (81)4
SOL:
QUS:8
SOL:
QUS:9
SOL:
QUS:10
SOL:
INCREASING DECREASING FUNCTIONS
Qn.No
1
Ans
2
Ans
3
Ans
4
Ans
5
Ans
f(x) = sin π‘₯ + cos π‘₯ , 0 ≀ x ≀ 2πœ‹
f ’(x) = cos x – sin x ,
f ’(x) = 0 , gives cos x = sin x ,
πœ‹ 5πœ‹
x= ,
4
4
Sign of f ’(x)
+
Nature
increasing
)
-
Decreasing
( , 2πœ‹)
+
increasing
Interval
πœ‹
[0 , )
4
πœ‹ 5πœ‹
( ,
4 4
5πœ‹
4
6
ANS
7
Ans
8
Ans
9
Find the intervals in which the function f given by f(x) = -2π‘₯ 3 - 9 π‘₯ 2 - 12π‘₯ +1
is strictly decreasing .
Ans
f(x) = -2π‘₯ 3 - 9 π‘₯ 2 - 12π‘₯ +1
f ’(x) = -6π‘₯ 2 - 18π‘₯ - 12 = -6(π‘₯ 2 +3x + 2 ) = -6( x +1 ) ( x+2)
Critical points are -1, -2.
Interval
x +1
x+2 -6( x+1 )
Nature
(x+2)
Decreasing
x -2
+
+
increasing
-2 x -1
+
+
Decreasing
x -1
10
Find the intervals in which the function f given by f(x) = 4π‘₯ 3 – 6 π‘₯ 2 72π‘₯ + 30 is strictly increasing
f(x) = 4π‘₯ 3 – 6 π‘₯ 2 - 72π‘₯ + 30
f ’(x) = 12 π‘₯ 2 - 12π‘₯ - 72 = 12(π‘₯ 2 –x – 6 ) = 12( x-3 ) ( x+2)
Critical points are -2,3.
Interval
x-3
x+2
12( x-3 ) ( x+2) Nature
+
increasing
x -2
+
Decreasing
-2 x 3
+
+
+
increasing
x 3
***********************************************************************************
MAXIMA AND MINIMA
1.
Find the point on the curve y2 = 4x which is nearest to the point (2, -8).
Solution: Let P(h, k)be the nearest point on the curve y 2 = 4x to the point (2, βˆ’8). Then
𝐷 = √(β„Ž βˆ’ 2)2 + (π‘˜ + 8)2
𝐷2 = 𝑍(π‘ π‘Žπ‘¦) = (β„Ž βˆ’ 2)2 + (π‘˜ + 8)2 ……….(1)
and k 2 = 4h
………….(2)
k2
2
𝑍 = ( 4 βˆ’ 2) + (π‘˜ + 8)2
By (1) and (2), we get
𝑑𝑍
For critical point π‘‘π‘˜ = 0
k2
π‘˜ ( βˆ’ 2) + 2(π‘˜ + 8) = 0
4
k 3 + 64 = 0
k = βˆ’4
𝑑2 𝑍
Now, π‘‘π‘˜ 2 )
π‘˜=βˆ’4
=
3k2
4
)
π‘˜=βˆ’4
= 12 > 0
So, at π‘˜ = βˆ’4, Z has minimum value.
By eq. (2), β„Ž = 4
So the nearest point on the curve y 2 = 4x to the point (2, βˆ’8) is (4, βˆ’4).
2.
A square piece of tin of side 18 cm is to be made into a box without top, by cutting a
square from each corner and folding up the flaps to form the box. What should be the side
of the square to be cut off so that the volume of the box is the maximum possible.
Solution:
π‘‰π‘œπ‘™π‘’π‘šπ‘’ π‘œπ‘“ π‘‘β„Žπ‘’ π‘π‘œπ‘₯ 𝑉(π‘₯) = π‘₯ (18 – 2π‘₯)2 = 324 π‘₯ + 4π‘₯ 3 – 72π‘₯ 2
2
𝑉’ (π‘₯) = 324 + 12 π‘₯ – 144 π‘₯
πΉπ‘œπ‘Ÿ π‘šπ‘Žπ‘₯π‘–π‘šπ‘’π‘š π‘£π‘œπ‘™π‘’π‘šπ‘’ 𝑉’ (π‘₯) = 0
x
18-x
18-x
or, 324 + 12 π‘₯ βˆ’ 144 π‘₯ = 0
2
or, π‘₯ = 9 π‘œπ‘Ÿ π‘₯ = 3
π‘₯ = 9 𝑖𝑠 π‘›π‘œπ‘‘ π‘π‘œπ‘ π‘ π‘–π‘π‘™π‘’ , π‘‘β„Žπ‘’π‘Ÿπ‘’π‘“π‘œπ‘Ÿπ‘’ π‘₯ = 3.
𝑉’’ (π‘₯ ) = 24 π‘₯ – 144.
𝑉’’ (π‘₯))π‘₯ = 3 = βˆ’72 < 0.
Therefore volume of the box is maximum for π‘₯ = 3.
3.
A tank with rectangular base and rectangular sides, open at the top is to be constructed so
that its depth is 2 m and volume is 8π‘š3 . If building of the tank costs Rs 70 per square meters for
the base and Rs 45 per sqarw meter for sides. What is the cost of least expensive tank?
Solution: Let the length and the breadth be π‘₯ π‘Žπ‘›π‘‘ 𝑦. Then
Volume of the tank = 8π‘š3 = 2π‘₯𝑦 ...............(i)
Let C be the cost of making the tank
𝐢 = 70π‘₯𝑦 + 45 × 2(2π‘₯ + 2𝑦)
𝐢 = 70π‘₯𝑦 + 180(π‘₯ + 𝑦)
From equation (i)
4
4
𝐢 = 70π‘₯. + 180(π‘₯ + )
π‘₯
π‘₯
4
𝐢 = 280 + 180 (π‘₯ + π‘₯) .................(ii)
𝑑𝐢
𝑑π‘₯
4
= 180 (1 βˆ’ π‘₯ 2 )
𝑑𝐢
For maxima and minima, 𝑑π‘₯ = 0
4
β‡’ 180 (1 βˆ’ π‘₯ 2 ) = 0
β‡’ π‘₯ = ο‚± 2 as π‘₯ β‰  βˆ’2, π‘₯ = 2
𝑑2 𝐢
8
Now 𝐷π‘₯ 2 = 180 × π‘₯ 3
𝑑2 𝐢
(𝐷π‘₯ 2 )
π‘₯=2
= 180 > 0 β‡’
𝐢 𝑖𝑠 π‘šπ‘–π‘›π‘–π‘šπ‘’π‘š π‘Žπ‘‘ π‘₯ = 2
By equation (ii)
𝐢π‘₯=2 = 𝑅𝑠. 1000
4.
Find the maximum area of an
π‘₯2
𝑦2
isosceles triangle inscribed in the ellipse π‘Ž2 + 𝑏2 = 1 with its vertex at one end of the major axis.
Solution:
1
1
Area of βˆ†π΄π΅πΆ = 2 × π΄π΅ × π·πΆ = 2 × 2𝑏 𝑠𝑖𝑛 πœƒ(π‘Ž βˆ’ π‘Ž π‘π‘œπ‘ πœƒ)
= π‘Žπ‘π‘ π‘–π‘›πœƒ(1 βˆ’ π‘π‘œπ‘ πœƒ)-----(i)
𝑑𝐴
π‘‘πœƒ
= π‘Žπ‘(sin2 πœƒ + cos πœƒ βˆ’ cos2 πœƒ)
𝑑𝐴
For maxima and minima π‘‘πœƒ = 0
π‘Žπ‘(sin2 πœƒ + cos πœƒ βˆ’ cos2 πœƒ) = 0
π‘π‘œπ‘ πœƒ βˆ’ π‘π‘œπ‘ 2πœƒ = 0
π‘π‘œπ‘ πœƒ = π‘π‘œπ‘ 2πœƒ
2πœƒ = 2π‘›πœ‹ ± πœƒ
πœƒ
πœƒ = π‘›πœ‹ ± 2----(ii)
As πœƒ ∈ (0, πœ‹) by equation (ii)
πœƒ=πœ‹βˆ’
πœƒ=
πœƒ
2
2πœ‹
3
2
𝑑 𝐴
= π‘Žπ‘(2𝑠𝑖𝑛2πœƒ βˆ’ π‘ π‘–π‘›πœƒ)
π‘‘πœƒ 2
𝑑2 𝐴
[π‘‘πœƒ2 ]
πœƒ=
2πœ‹
3
< 0 β‡’ 𝐴 is maximum.
By equation (i)
𝐴max =
3√3
4
π‘Žπ‘ sq.unit
5.
Show that the volume of the greatest cylinder which can be inscribed in a cone of height
4
β„Ž and semi-vertical angle ∝ is 27 πœ‹β„Ž3 π‘‘π‘Žπ‘›2 ∝
Solution: Let π‘₯ π‘Žπ‘›π‘‘ 𝑦 be the radius and height of the inscribed cylinder
Then semi vertical angle =∝
Volume (V) of the cylinder = πœ‹π‘₯ 2 𝑦
= πœ‹π‘‘π‘Žπ‘›2 ∝ (β„Ž2 𝑦 βˆ’ 2β„Žπ‘¦ 2 + 𝑦 3 )
𝑑𝑉
=0
𝑑𝑦
β„Ž
(𝑦 βˆ’ β„Ž)(3𝑦 βˆ’ β„Ž) = 0
𝑦 = β„Ž, 3
And
𝑑2 𝑉
𝑑𝑦 2
=0
When 𝑦 =
𝑑2 𝑣
β„Ž
3
[𝑑𝑦 2 ] = 2πœ‹π‘‘π‘Žπ‘›2 ∝ β„Ž < 0
β„Ž
𝑉is maximum when 𝑦 = 3
β„Ž3
2
β„Ž3
Maximum value = πœ‹π‘‘π‘Žπ‘›2 ∝ [ 3 βˆ’ 9 β„Ž3 + 27]
4
= 27 πœ‹β„Ž3 π‘‘π‘Žπ‘›2 ∝
6.
Show that the semi vertical angle of a right circular cone of given surface area and
1
maximum volume is π‘ π‘–π‘›βˆ’1 3.
Solution: 𝐺𝑖𝑣𝑒𝑛: πœ‹π‘Ÿ(𝑙 + π‘Ÿ) = 𝑆
𝑉 =
𝑉
2
1 2
πœ‹π‘Ÿ β„Ž
3
πœ‹2 4 2
π‘Ÿ 2𝑠2
2πœ‹π‘ π‘Ÿ 4
2
=
π‘Ÿ (𝑙 βˆ’ π‘Ÿ ) =
βˆ’
9
9
9
𝑑𝑉
2π‘Ÿπ‘  2
8πœ‹π‘ π‘Ÿ 3
2𝑉
=
βˆ’
π‘‘π‘Ÿ
9
9
𝑑𝑉
π‘Ÿ
1
= 0 π‘Žπ‘›π‘‘ 𝑒𝑠𝑖𝑛𝑔 𝑠 = 4πœ‹π‘Ÿ 2 𝑀𝑒 𝑔𝑒𝑑 𝑙 = 3π‘Ÿ π‘œπ‘Ÿ =
= 𝑠𝑖𝑛 𝛼
π‘‘π‘Ÿ
𝑙
3
1
𝛼 = π‘ π‘–π‘›βˆ’1
3
𝑑2𝑉
= βˆ’π‘£π‘’
π‘‘π‘Ÿ 2
7.
Show that the volume of the largest cone that can be
inscribed in a sphere of radius R is 8/27 of the volume of the
Solution:
sphere.
π‘‰π‘œπ‘™π‘’π‘šπ‘’ π‘œπ‘“ π‘‘β„Žπ‘’ π‘π‘œπ‘›π‘’ = (1/3) πœ‹π‘Ÿ 2 β„Ž = (1/3) πœ‹ (𝑅 2 – π‘₯ 2 ) ( 𝑅 + π‘₯) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ (1)
3𝑉/ πœ‹ = 𝑅 3 – π‘₯ 3 + 𝑅 2 π‘₯ – π‘₯ 2 𝑅
𝑍(π‘₯) = 𝑅 3 – π‘₯ 3 + 𝑅 2 π‘₯ – π‘₯ 2 𝑅
𝑍’ (π‘₯) = βˆ’3π‘₯ 2 + 𝑅 2 – 2π‘₯𝑅
πΉπ‘œπ‘Ÿ π‘šπ‘Žπ‘₯π‘–π‘šπ‘’π‘š π‘£π‘œπ‘™π‘’π‘šπ‘’ 𝑍’ (π‘₯) = 0
R
βˆ’3π‘₯ 2 + 𝑅 2 – 2π‘₯𝑅 = 0
x
π‘₯ = 𝑅/3 π‘œπ‘Ÿ π‘₯ = βˆ’ 𝑅
π‘₯ = βˆ’π‘… 𝑖𝑠 π‘›π‘œπ‘‘ π‘π‘œπ‘ π‘ π‘–π‘π‘™π‘’ .
r
𝑍’’ (π‘₯) = βˆ’6π‘₯ βˆ’ 2𝑅 < 0
π‘‡β„Žπ‘’π‘Ÿπ‘’π‘“π‘œπ‘Ÿπ‘’ π‘£π‘œπ‘™π‘’π‘šπ‘’ 𝑖𝑠 π‘šπ‘Žπ‘₯π‘–π‘šπ‘’π‘š. 𝐼𝑛 (1) 𝑠𝑒𝑏𝑠𝑑𝑖𝑑𝑒𝑑𝑖𝑛𝑔 π‘‘β„Žπ‘’ π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ π‘₯
π‘‰π‘œπ‘™π‘’π‘šπ‘’ π‘œπ‘“ π‘‘β„Žπ‘’ π‘π‘œπ‘›π‘’ =
1
πœ‹×
3
8𝑅 2
9
×
4𝑅
3
8
= 27 ×
4πœ‹π‘… 3
3
=
8
27
π‘£π‘œπ‘™π‘’π‘šπ‘’ π‘œπ‘“ π‘‘β„Žπ‘’ π‘ π‘β„Žπ‘’π‘Ÿπ‘’.
8.
A wire of length 28 cm is cut into two pieces. One of the pieces is turned in the form of a
square and the other into a circle. Find the length of each piece so that the sum of the areas of the
two is minimum.
SOLUTION:
9.
SOLUTION;
10.
SOLUTION;
11.
SOLUTION;
12.
SOLUTION;
RATE OF CHANGE QUANTITIES
Q1
The total revenue received from the sale of x souveniers in connection with PEACE DAY
is given by R (x) = 3 x2 +40 x+ 10. Find the marginal revenue when 100 souveniers were sold.
Solution- we have R (x) = 3 x2 +40 x+ 10
𝑅 β€² (π‘₯) = 6x +40
𝑅 β€² (100) = 6x100 +40 =640
Q 2. For the curve y = 5x – 2x3,if x increases at the rate of 2 units / s,then how fast is the slope of
the curve changing when x = 3 ?
𝑑π‘₯
Solution: - We have 𝑑𝑑 =2 units / s
𝑑𝑦
y = 5x – 2x3, Slope S =𝑑π‘₯ =5- 6 x2
𝑑𝑆
= -12 x.
𝑑𝑑
𝑑𝑆
𝑑π‘₯
𝑑𝑑
( at x =3 )= -12×3×2 =-72 units/ s
𝑑𝑑
Q 3. Radius of a variable circle is changing at the rate of 5 cm/ s.What is the radius of the circle
at atime when its area is changing at the rate of 100 cm2/s ?
Solution: - The area A of a circle with radius r = A =πœ‹π‘Ÿ2
𝑑𝐴
𝑑𝑑
π‘‘π‘Ÿ
=2Ο€r 𝑑𝑑 or 100 =2Ο€r×5
r=
10
πœ‹
cm
Q 4. The side of a square is changing at the rate of 5cm/sec. How fast is its area increasing when
the length of its side is 8cm.
Solution: - Let side of square at any time be x cm.
𝑑π‘₯/𝑑𝑑=5cm/sec
Now, area of square ,A=x2
∴ 𝑑𝐴/𝑑𝑑 =80π‘π‘š2/ Ans
Q5 . The radius of an air bubble is increasing at the rate of 12 cm/s. At what rate is the volume of
the bubble increasing when the radius is 1cm?
Solution : Let r be the radius of bubble and v be the volume of bubble at any time t.
4
Then π‘‘π‘Ÿ/𝑑𝑑 =12π‘π‘š π‘Žπ‘›π‘‘ π‘Ÿ=1π‘π‘š, V =3 Ο€r3
𝑑𝑉
By solving , we get 𝑑𝑣/𝑑𝑑= π‘‘π‘Ÿ ×
π‘‘π‘Ÿ
𝑑𝑑
= 48Ο€ π‘π‘š3/s 8.
Q 6. A man 2m high, walks at a uniform speed of 6m/min away from a lamp post 5m high. Find
the rate at which the length of his shadow increases
Solution : Let AB is the Lamp post.
At any time t, let the man be at a distance of x m away from the lamp post and
Y m be length of his shadow
Then AB= 5m and CD= 2m
𝑑π‘₯
𝑑𝑑
=6m/min
By solving we get
𝑑𝑦
𝑑𝑑
=4m/min
Q.7 Sand is pouring from a pipe at the rate of 12cm3/sec. The falling sand forms a cone on the
ground in such a way that the height of the cone is always one –sixth of the radius of the base.
How fast is the height of the sand cone increasing when the height is 4cm?
Solution: Let r be the radius h be the height and V be the volume of sand cone at any time t.
Then
𝑑𝑣
𝑑𝑑
1
=12π‘π‘š3 /s and h= 6 r
By solving we get
π‘‘β„Ž
=
1
𝑑𝑑 48πœ‹
cm/sec
Q. 8 The radius of a circle is increasing uniformly at the rate of 3cm/s. find the rate at which the
area of the circle is increasing when the radius is 10cm.
Solution: - Let r be the radius and A be the area of the circle at any time t.
π‘‘π‘Ÿ
Now 𝑑𝑑 =3cm/s and r=10cm
Now A=Ο€π‘Ÿ 2
By solving it we get
𝑑𝐴
𝑑𝑑
=60πœ‹π‘π‘š2 /s
Q. 9 Find the point on the curve 𝑦 2 =3x for which the abscissa and ordinate change at the same
rate.
Solution: - Given 𝑦 2 =3x and
𝑑𝑦
𝑑𝑑
=
𝑑π‘₯
𝑑𝑑
𝑑𝑦
𝑑π‘₯
=3
𝑑𝑑
𝑑𝑑
3
𝑦=
2
2𝑦
3
3
3
So, π‘₯ = 4 and point is (4 , 2)
Q. 10 An edge of a variable cube is increasing at the rate of 3cm/s. How fast is the volume of the
cube increasing when the edge is 10 cm long.
Solution: - Let side of the cube is x. Then
Volume 𝑉 = π‘₯ 3
Now
𝑑𝑉
)
𝑑𝑉
𝑑𝑑
𝑑𝑑 π‘₯=10
𝑑π‘₯
= 3π‘₯ 2 𝑑𝑑
= 3(10)2 . 3 = 900 π‘π‘š3 /𝑠
as
𝑑π‘₯
𝑑𝑑
= 3 π‘π‘š/𝑠
TANGENTS AND NORMALS
1. Find the equations of the tangent to the curve y =π‘₯ 2 + 4π‘₯ + 1 at the point whose xcoordinate is 3.
2. Find the equations of the normal to the curve y =π‘₯ 2 + 4π‘₯ + 1 at the point whose xcoordinate is 3.
3. Find the slope of the normal to the curve y = π‘₯ 2 - 3π‘₯ + 2 at the point whose x-coordinate
is 3.
πœ‹
4. Find the equations of the tangent to the curve x = cos 𝑑 , y = sin 𝑑at t = 4 .
5. Find the equation of the normal at the point (1,1) on the curve 2y + π‘₯ 2 = 3.
6. Find the equation of tangent to the curve y = √3π‘₯ βˆ’ 2 , which is parallel to the line
4x -2y + 5 =0.
7. Find the equations of the tangent to the parabola 𝑦 2 = 4π‘Žπ‘₯ at the point ( a𝑑 2 , 2π‘Žπ‘‘ )
π‘₯2
8. Find the equations of the tangent to the parabolaπ‘Ž2 -
𝑦2
𝑏2
= 1 at the point (h,k .
9. Prove that the curves x = 𝑦 2 and xy = k cut at right angles if 8π‘˜ 2 = 1.
10. On which point the line y = x + 1 is a tangent to the curve 𝑦 2 = 4π‘₯
ROLL’S THEOREM AND MEAN VALUE THEOREM
1.
2.
3.
4.
Examine if the Roll’s theorem is applicable for the function f(x)=[x], if x ∈ [5,9].
5.
Examine if the Roll’s theorem is applicable for the function f(x)=x2-1 if x ∈ [1,2].
SOLUTION:TANGENTS AND NORMALS
1. curve y = π‘₯ 2 + 4π‘₯ + 1
𝑑𝑦
𝑑π‘₯
𝑑𝑦
𝑑π‘₯
= 2x + 4
at x = 3 is 10. So m = 10.
π‘₯ = 3 , y = 22
π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘‘β„Žπ‘’ π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘ 𝑖𝑠
y - 22 = 10 ( x – 3 ) i. e. 10x –y = 8.
2. curve y = π‘₯ 2 + 4π‘₯ + 1
𝑑𝑦
𝑑π‘₯
𝑑𝑦
𝑑π‘₯
= 2x + 4
at x = 3 is 10.
1
So slope of normal is -10.
π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘‘β„Žπ‘’ π‘›π‘œπ‘Ÿπ‘šπ‘Žπ‘™ 𝑖𝑠
1
y - 22 = - 10( x – 3 ) i. e. x + 10y = 223
3. y = π‘₯ 2 - 3π‘₯ + 2
𝑑𝑦
𝑑π‘₯
𝑑𝑦
𝑑π‘₯
= 2x -3.
at x = 3 is 3.
1
So slope of normal is -3.
4. x = cos 𝑑 , y = sin 𝑑
𝑑π‘₯
𝑑𝑑
𝑑𝑦
𝑑π‘₯
= βˆ’ sin 𝑑
at t =
πœ‹
4
𝑑𝑦
,
𝑑𝑑
𝑑𝑦
= cos 𝑑
=>𝑑π‘₯ = - cot t
= -1
πœ‹
x = cos 4 =
1
,
√2
πœ‹
y = sin 4 =
1
√2
Hence, π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘‘β„Žπ‘’ π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘ 𝑖𝑠
y-
1
√2
= -1( x -
1
√2
)
=>
x + y = √2 .
5. Curve 2y + π‘₯ 2 = 3
𝑑𝑦
𝑑𝑦
2𝑑π‘₯ +2x = 0
=>𝑑π‘₯ = -x
𝑑𝑦
=>𝑑π‘₯ π‘Žπ‘‘ (1,1) = βˆ’1
So slope of normal is 1.
π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘‘β„Žπ‘’ π‘›π‘œπ‘Ÿπ‘šπ‘Žπ‘™ 𝑖𝑠
=>
x–y=0
y – 1 = 1( x – 1 )
6. curve y = √3π‘₯ βˆ’ 2 ,
𝑑𝑦
=
𝑑π‘₯
3
2√3π‘₯βˆ’2
Slope of the line
4x -2y + 5 =0 is 2.
Given
3
2√3π‘₯βˆ’2
41
=2
=> x = 48and y =
3
4
Hence, π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘‘β„Žπ‘’ π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘ 𝑖𝑠
3
41
y - 4 = 2 ( x - 48 )
=>
48x -24 y -23 = 0
7. parabola 𝑦 2 = 4π‘Žπ‘₯
𝑑𝑦
𝑑𝑦
2y𝑑π‘₯ = 4a
=>𝑑π‘₯ =
2π‘Ž
𝑑𝑦
=>𝑑π‘₯ at the point ( a𝑑 2 , 2π‘Žπ‘‘ ) =
𝑦
1
𝑑
Hence, π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘‘β„Žπ‘’ π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘ 𝑖𝑠
1
y – 2at = ( x - a𝑑 2 )
8.
π‘₯2
π‘Ž2
-
𝑦2
𝑏2
𝑑𝑦
= 1 =>𝑑π‘₯ =
x – ty + a𝑑 2 = 0
=>
𝑑
𝑏2 π‘₯
π‘Ž2 𝑦
𝑏2 β„Ž
𝑑𝑦
at the point ( h,k = π‘Ž2 π‘˜
𝑑π‘₯
Hence, π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘‘β„Žπ‘’ π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘ 𝑖𝑠
y–k=
9. x = 𝑦 2
𝑏2 β„Ž
π‘Ž2 π‘˜
β„Žπ‘₯
(x–h)
𝑑𝑦
=>𝑑π‘₯ =
=>π‘Ž2 -
π‘˜π‘¦
𝑏2
=1
1
2𝑦
𝑑𝑦
and xy = k
=>𝑑π‘₯ =
1
βˆ’π‘¦
π‘₯
βˆ’π‘¦
cut at right angles if 2𝑦x π‘₯ = -1
so
1
x=2
1 21
xy = k, =>π‘₯ 2 𝑦 2 = π‘˜ 2 =>(2)
Since
2
1
, 𝑦2 = 2
= π‘˜2
οƒ° 8π‘˜ 2 = 1
𝑑𝑦
10. 𝑦 2 = 4π‘₯ =>2y𝑑π‘₯ = 4
𝑑𝑦
2
=>𝑑π‘₯ = 𝑦
Slope of the line y = x + 1 is 1.
οƒ°
2
𝑦
=1
=>
y = 2. Then x = 1.
οƒ° So required point is ( 1, 2).
SOLUTIONS OF ROLL’S AND M.V.THEOREM
1
.
2
.
3
.
4
.
Hence Roll’s theorem not satisfied.
5
.
Hence Roll’s theorem not satisfied.