Solutions to Review Problems 1. maximize z = 5x1 +4x2 subject to x1 + 2 x2 6 –2x1 + x2 5 5x1 + 3 x2 15 x1 0, x2 0 a) Optimal solution 12 15 120 x1 , x 2 , z 7 7 7 b) Dual Problem min z ' 6 w1 5w2 15w3 subject to w1 2 w2 5w3 5 2 w1 w2 3w3 4 w1 , w2 , w3 0 c) Complementary Slackness conditions x1 ( w1 2w2 5w3 5) 0 x 2 (2w1 w2 3w3 4) 0 w1 (6 x1 2 x 2 ) 0 w2 (5 2 x1 x 2 ) 0 w1 (15 5 x1 3x 2 ) 0 Substituting x1 12 15 , x 2 , we obtain 7 7 12 ( w1 2 w2 5w3 5) 0 w1 2w2 5w3 5 7 15 (2 w1 w2 3w3 4) 0 2w1 w2 3w3 4 7 w1 0 0 44 0 7 w1 0 0 w2 w2 0 The optimal solution to the dual problem is w1 5 w1 7 w2 0 6 w3 7 5 6 120 , w2 0, w3 , z ' . 7 7 7 2. Consider the linear programming problem Maximize z= 2x1+3x2-x3 Subject to x1+2x2-x3+x4 =6 x1-3x2-3x3+ x5=10 xj>=0, j=1,2,3 a) x [6,0,0,0,4]T is a feasible solution for this problem, i.e. it satisfies all the constraints. Also, 1 1 0 1 columns and corresponding to variables x1 , x5 are linearly independent. So x [6,0,0,0,4]T is a basic feasible solution to the problem above. b) Dual Problem min z ' 6 w1 10w2 subject to w1 w2 2 2w1 3w2 3 w1 3w2 1 w1 , w2 0 Complementary Slackness conditions: x1 ( w1 w2 2) 0 x 2 (2w1 3w2 3) 0 x3 ( w1 3w2 1) 0 x 4 w1 0 or w1 (6 x1 2 x 2 x3 ) 0 x5 w2 0 or w2 (10 x1 3x 2 3x3 ) 0 Substituting x1 6, x2 0, x3 0, x4 0, x5 4, we obtain 6 ( w1 w2 2) 0 w1 w2 2 0 (2 w1 3w2 3) 0 0 ( w1 3w2 1) 0 0 w1 0 4 w2 0 w2 0 w1 2 w2 0 Now w* [2,0]T is a feasible solution to the dual problem with z’=12. x * [6,0,0,0,4]T is a feasible solution to the primal problem with z=12. According to the Duality Theorem, x * , w* are optimal solutions in the respective problems. Ex. 1 (3.2) An optimal solution is [0.27, 1.83, 0.94, 0.5, 0, 0]T with objective function value 117.81. The dual problem has optimal solution with objective function value 117.81. The 1st, 2nd, 3rd and 4th constraints in the dual problem are satisfied as strict equations at any optimal solution, i.e. the slacks in these constraints are equal to 0 in every optimal solution to the dual problem. Ex. 3 (3.2) There are no feasible solutions to the problem. The dual problem is either infeasible or has no finite optimum. Ex. 4 (3.2) There are solutions to the dual problem with arbitrary large dual objective function values. The primal problem is infeasible. Ex. 5 (3.2) max z c T x s.t. Ax b x0 b [12, 21, 8, 2, 5]T , w [0, 4, 5, 0, 3]T is an optimal solution to the dual problem The optimal value of the primal objective function is 0 4 z z ' b T w 12 21 8 2 55 139 0 3 Ex.11 (3.2) max z 4 x1 2 x 2 3 x3 s.t. 2 x1 3 x 2 x3 12 x1 4 x 2 2 x3 10 3 x1 x 2 x3 10 x1 , x 2 , x3 0 min z ' 12 w1 10 w2 10 w3 s.t. 2 w1 w2 3w3 4 3w1 4 w2 w3 2 w1 2 w2 w3 3 w1 , w2 , w3 0 Optimal solution to the primal problem x1 2, x2 0, x3 4, z 20. Complementary slackness conditions: x1 (2 w1 w2 3w3 4) 0 2 (2 w1 w2 3w3 4) 0 x 2 ( 3w1 4 w2 w3 2) 0 0 ( 3w1 4 w2 w3 2) 0 w1 0 w1 0 x3 ( w1 2 w2 w3 3) 0 4 ( w1 2 w2 w3 3) 0 w2 3w3 4 w2 1 w1 (2 x1 3 x 2 x3 12) 0 w1 4 0 w3 1 2 w2 w3 3 w2 ( x1 4 x 2 2 x3 10) 0 w2 0 0 w3 (3 x1 x 2 x3 10) 0 w3 0 0 Optimal solution to the dual problem w1 0, w2 1, w3 1, z ' 20. Ex. 7 (3.3) max z x1 x 2 x3 x 4 s.t. x1 2 x 2 x3 3x 4 12 x1 3x 2 x3 2 x 4 8 2 x1 3x 2 x3 2 x 4 7 x1 , x 2 , x3 , x 4 0 a) Solution using the Revised Simples method 1 0 0 x5 12 0 1 B 0 1 0, x B x 6 B b 8 , c B 0, z c BT x B 0 0 0 1 x7 7 0 z1 c1 1, z 2 c 2 1, z 3 c3 1, z 4 c 4 1, z 5 c5 0, z 6 c6 0, z 7 c7 0, x3 entering var . 1 1 1 1 0 t 3 B A3 1 , 2nd basic var . departing ( x6 ). E 0 1 0 1 0 1 1 1 1 0 x5 20 0 1 1 B 0 1 0, x B x3 B b 8 , c B 1, z c BT x B 8, c BT B 1 [0,1,0] 0 1 1 x7 7 0 1 2 1 z1 c1 [0,1,0]1 1 0, z 2 c 2 [0,1,0] 3 1 2, z 3 c3 [0,1,0] 1 1 0 2 3 1 1 3 1 0 z 4 c 4 [0,1,0]2 1 1, z 5 c5 [0,1,0]0 0 0, z 6 c6 [0,1,0]1 0 1, 2 0 0 0 z 7 c7 [0,1,0]0 0 0 1 Optimal solution to the Primal Problem: x1 0, x2 0, x3 8, x4 0, z 8 b) Dual Problem min z ' 12w1 8w2 7 w3 s.t. w1 w2 2w3 1 2w1 3w2 3w3 1 w1 w2 w3 1 3w1 2w2 2w3 1 w1 , w2 , w3 0 Optimal solution to the Dual Problem: 1 1 0 T T 1 w c B B [0,1,0]0 1 0 [0,1,0] 0 1 1 or w1 ( z 5 c5 ) c5 0 0 0, w2 ( z 6 c6 ) c6 1 0 1, w3 ( z 7 c7 ) c7 0 0 0 and z’=8 #8 Primal Problem max z x1 3 x3 Dual Problem min z ' 4 w1 5w2 s.t. s.t. x1 2 x 2 7 x3 4 x1 3 x 2 x3 5 x1 , x 2 , x3 0 Optimal Solution to the Dual problem: w1 3, w2 2, z' 2 w1 w2 1 2 w1 3w2 0 7 w1 w2 3 w1 , w2 unrestrict ed Complementary Slackness conditions: x1 ( w1 w2 1) 0 x1 0 0 x 2 (2 w1 3w2 0) 0 x2 0 0 x1 2 x3 (7 w1 w2 3) 0 x3 16 0 x2 1 x3 0 w1 ( x1 2 x 2 7 x3 4) 0 3( x1 2 x 2 7 x3 4) 0 w2 ( x1 3 x 2 x3 5) 0 2( x1 3 x 2 x3 5) 0 Optimal solution to the Primal problem: x1 2, x2 1, x3 0, z 2 #10. maximize z = 12x1 + 20x2 +21x3 + 18x4 subject to 24x1 + 40x2 + 46x3 +44x4 1200 x1 + x2 + x3 + x4 30 3x1 + 6x2 + 6x3 + 6x4 150 x1 0, x2 0, x3 0, x4 0 Someone claims that the final simplex tableau has the objective row 12 X1 20 x2 21 x3 18 x4 0 x5 0 X6 0 x7 0 1 0 3 0 4 3 540 The solution to the dual problem from this tableau is w1 0, w2 4, w3 3 z ' 1200w1 30w2 150w3 570 540 so there must be a mistake in the tableau.
© Copyright 2026 Paperzz