! ! ! " $% &# " , % / 0 ! " 1 % ' *# # ' ()* +,& . " ! "! + # ,+, " "" ) " 12 *)*' 0( 3' $ & ) + # # 4-256678 # # "# ( ! ! This is definitely a collective effort. The first gratitude is to Lilliana Mosquera who was the main research assistant in the field for these experiments. Ana Maria Roldán and Pablo Ramos also provided major assistance in the field, and Natalia Candelo in processing of data. My colleagues Diana Maya and Maria Claudia Lopez had a major role in the field and in the design and adaptation of the experimental design to the context. In the field Ximena Zorrilla and Carmen Candelo have always been very helpful with their enthusiasm and devotion in the field and with the communities in Sanquianga. The people of Bazán and Amarales in Sanquianga deserve as well my gratitude, as well as Eduardo Restrepo, a true scholar on the Pacific coast social systems. Jean Ensminger, Abigail Barr and Joe Henrich have made this entire project possible and have also provided valuable inputs for my particular case. An international fellowship from The Santa Fe Institute also provided ideal conditions for research. -! ( " ,- ! # . !# # ! . ! . / / / / % # # . ! 0 ! # . ( # / / ! / ' / / ! ( ' # . / / 1 . ! ! ! ( / , /# / / 1 # # , # ! / / # ! ! ! 2 / ! , # /. ! !/ . ! # . . / . . . . # . ( # , / (/ 3- 2 ! . / 44 5- While the rest of country shows unemployment rates of 11%, such indicator is at the 14% for the afrocolombians living in various regions and mainly in the pacific coast. The primary schooling coverage is similar to the rest of the country, but secondary schooling reaches 62% while the rest of the nation has reached 75% and college level education coverage is of only 14% for this group, while of 26% in the rest of nation. Uninsured population involves 51% of the afrocolombians while the same rate is at 35% elsewhere. Only 46% of the population in the afrocolombian population has access to sewage systems while the rest has reached an 81% level. Further, 7,285 afrocolombians per 10,000 population are at high risk of malaria, while for the rest of the country such indicator is at less than a third of that (DNP, 2004). / 44 6 . . # ( . . . # 0 / / , 5! 9 " ( - ! # / ! ! 7 89 89 # /. ( ## / /. # 3: / ;;&5 9 ;;&6 , < = +$4 ! 44 ! # ! ! - # # > / . ! # 3 3 / 6. . / / ! #6 (/ # ! 3 6 ;))/ ( # ( 3> /. $ # #!# ! +4F/ G! 3?+4/444 6. / # /444 / 44 6 / . #! # 3B ! < ! . . C D # . /444 . . C4 D3<6/ )+C)&D /$44 / / < # ! < !. / * @A (/ . . ( 6/ #! )$C ) E . ! &C- G . /# ' 3 44 6 > . . /< = . . / . (. . 3 ' 6 "> ! . . ( # . / ( # á ' 0 . "H H ' I H H ',- # . $ > 0-E :-% >% J2 : 0 %0 %0 K E :: : 9 " # . % $+ ) ); & ; 4$ & &) & &$; + &;) . > 0 . 1 7 (# # # # < 7 ( # : $& ) ) +++ 4 & ; ; ) F ) F &F &+F # 1 # ;; / 7 7 / / 44 / 1 . !# , ! ( #!. / .! / ( / / ! @ !. # / ( < (/ . #! @ / / . ( E . / / @ @ / ! ! # ! + ; . . # @ " ! , . . 3 . @ ! * @A 6 . 3 . ( . ' ! 6 7 & F * @A #1 ;F # @ . < B ' 3! E 3 L 6 3! . E 6 2 7 2 7 @ 3 # +& +$ +& +& +& +& +$ 6 F 6 > 7 4 $& & ; 4$ M ;+ M +; ) & &+ 4$ " # #! / / # # "!+ / ' 4 ;) $4 ) 4 M + $ M ) ; 4 $ / ! 4 & 4 4 4 . # /. / )) M &+& M +4 +$ & 4 44 # $ F ' ; ! # # ! # ( ! ' = ( . !3 # ' 6/ . ( # , . # ! > . ! . +& ( > > > > >$ # F E 7 ' ! ' ! . . ( # / # / ) > ( / - M / ! ! N > ( / – !" # # 0 0 .2 .1 Fraction .4 Fraction .2 .6 .8 .3 – 0 .2 .4 MI1 .6 .8 1 %– & 5000000 10000000 MI2 15000000 20000000 !" 0 .2 Fraction .4 .6 .8 $ 0 0 10 '– ( ) 20 MI3 + ,– - . ) 0 0 .2 .2 Fraction .4 Fraction .4 .6 .6 .8 .8 * & 30 0 ' 2 7 # 4 MI4 6 8 0 ( . 10 3 L +& 20 MI5 30 6 / +4F ( / ! # #! ! ! !. ( ! . ( !# ! 9 ! . . ( !. . / / / # 1/ # / O P . . E . ! - 9 ! * # ! . # / !. (/ . / | mi2 | | | mi3 | | | mi4 | | | mi5 | | | # # / # . ( / ! mi2 1.0000 mi3 ! # mi4 186 0.3965* 1.0000 0.0000 186 186 -0.0932 -0.1864* 1.0000 0.2058 0.0109 186 186 186 0.0639 0.1684* -0.0772 0.3863 0.0216 0.2952 186 186 186 - ( # ( mi5 1.0000 186 , @ . ! > > 3 . ' " . (/ / ! . 6 > # # H mi1 0.0642 0.4260 156 -0.0698 0.3867 156 -0.0271 0.7371 156 0.0123 0.8791 156 ( / /. # 1 ( # +4F . . . (/ # # . M /444 ! . ( . ( . / . # / # / / $F M /444 # $F M $/444N! 3 44 6 . " / 2 M /444N! / 4F . .8 .6 Fraction .4 .2 0 0 ' 10000 7 20000 30000 hhwealthusd # . ' 40000 50000 2 73 6 . # !/ . /. # ! . E . /. ! . 3# . 6 . ! / $ $! ! 0 .1 .2 Fraction .3 .4 .5 #! #! B # 0 ' 5000 $ 7 # incomeusd 10000 2 73 15000 . (/ / / 6 / * . / # 3: # ! #1 , . 3 6 . ( ! 3 / ;;&57 9 / ;;&6/ ! % ! (6 E ( ! /# ( / / # . # 4! ,; ! # /# . 1 / # . . E . / # . . ,; . & ! 7 B 37B6 !> 2 B 3 >2B6 , ! B 3 6 7 # ,* 7 B 37*7B6 3Q6" 9 3 8 3Q6 < : . # " # $ @ #! . 4 4 " & ! 3 >2B6 37B6 &4 ;& 4 -@A $ -6? 3 + 6 #! 2B >2B 3- 6 . . ! . # . * * @A / ) !$F #!# * ;, / 44 E . ! # 3 / /$44 # . ., / / 44 . . ! ! . (# / ! ! #! ! ) . (/ ! * @A / . . / . * B ") ! The core games (DG, SMUG, 3PP) are reported here. Results for the replications with students and for the Double-Blind experiments are not included in the analysis that follows. 4 Recall that for the DG and SMUG the same group of people played both games, although matching was anonymous, random and choices for the first game (DG) were not known to player 2s until the second game (SMUG) was finished. # / . 6 * @A / . : . !# 3 . / . # . ! ! . # . # . $ # . ! ( ! ' / . !3 . % 3 5 . / # & " . / 3 @ . 7B # / ! # 4 4 / 4 >2B . 6 ' @ / . ! . / ." 7B . >2B ! / . . # 6/ / 3 ! . &6 . In fact such recruitment rule was easily enforced by the same pool of potential participants willing to participate if they saw two people from the same household in one session. 6. . ' & : . # ! H . 7 ! . ! 3* @A 6/ " . / / ! / # !/ / 3# /. . # #! . ! ! 6 . < / . ' ) H !. . / . / ( # / / ( 1 ( ! # . . ! !, . ' ) B . ! . " / ( # ! . ! ! H . / /. C! ; 7 / 37B6/ 2 # / / 3 >2B6 ! ; , ! 3 # 6 # D ! ( ! 3* . / ;;+5 / / /. # . ! . ! # ! - ' / 44 6 / . ! # ! # @ , ! . # ! ! . . # . ! . , ! # # #! 3 6 ! / 4 ! : # # ! 1 ! , 6 # 7B ( . >2B 7B /. . ! $4F . / . M /444 . . # >2B/ !# $4F : & ! / # / . 8" / @ ' + . - M 4/444 # $4F ' . ! >2B - 3 4 ! . ! ! * . ! 3#!)4F 7B - . (. #! ! . . /. / 44$6 / . >2B . Cardenas and Carpenter (2005) survey about 15 papers in different countries in the world using the dictator game. For the students subject pools, the average of offers is around 25% and ranging from 20-30%. For non-students the average offer found is 40%. 80 Percent of Sample 70 60 DG 50 UG 40 3PP 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 Offer Amounts ' 2 + ' #! ! , ! 3 >2B6 . # < ' $4F / + #! 1 ! 7 #! ! ! . F )4F >2B 7B E . 7B ! 7B >2B/ # . ! 1 , . # 3 . , ( # R S@SL 4 )+4/ /. . 6. / $)F >2B ! # )F / . ! ,4 )4; . M4 4& 3 # 4 )F R S SL 4 ))+ , L ,4 + / / ! 7 B >2B ( 1 0 # . # #! ;4F . . L4 44 46/ H @ $4N$4 ! . . / 2 # >2B ! ! L 4 $)44/ , ! # ! # 4 7B ! # ! / . 7B . !> . ! $ . )4F 37B6/ 6 3 1 ! >2B . ! . ! ! , # . 7B >2B # ' , $4N$4 +/ 4F 4F ! . . >2B5 % . 7B) ! . + >2B / # 4 # ! / #! @ 5" / # ! ! ! " 2/ 2 " ! >2B ! : # . 3 >2B6 1 /# ( ! / 3 . ! . ( ! # 6 ! . . ( # ( # ! , ! @ / ! D . ,# ! ! ! /. ! H ! . ! / @ . # # . E . / >2B / ! ! >2B / , . !/ . ! ( @ #! # # ! >2B # ) ' ; . 1 >2B O2P 1 1 >2B * ! / !. # $4N$4 0 ! !#! # 7 ! ! ! , 1 ( ! # @ # 2 ! Pairwise comparisons are not feasible since the sample of participants in DG and 3PP were different For the hypothesis that the SMUG offers were higher than for the 3PP, we obtain a t-test t = 1.3306, P > t = 0.0942, with an average difference in offers of $0.387, about 4% of the initial endowment. 8 %D *BB, 4 4 4 4 4 $4 &4 )4 +4 ;4 44 4 4 4 4 4 4 %D 3:8 4 44 4 44 & &) & &) 4 44 4 44 & &) 4 44 & &) & &) & &) 1 3 >2B6 4 ; ) ; + $ ; 4 + + # & ' ! %D 4 ,; " ,; " ( ( 4 3:8 3:8 3:8 & $4 &4 4 & $ $; + & 4 $ $ $+ ) + )$ $+ + + $ 4 $4 4 + 4 44 ) 44 4 44 )4 44 4 44 ) 44 4 44 ) 44 4 44 44 44 3 6 # 70 70.0 UG 60.0 3PP UG Expected Income 50 50.0 3PP Expected Income 40 40.0 30 30.0 20 20.0 10 10.0 0 Expected Income for Player 1 Percentage of Rejections or Punishment 60 0.0 0 10 20 30 40 50 60 70 80 90 100 Offers ' # ; ' E . # ! / 1 3 >2B6 3 6 ( !# >2B 0 ( 4 . / ; ! 1 ! 3 6 3 &6 # ) . #! # #! 1 F . # 1 N 1 /. ! 4F 44F/ O2P . .# 4 ! # #! ! 1 . F # ! P2: P2: P2: P2: P2: P2: P2: P2: P2: P2: P2: Offer P2: Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Received Accept 0 10 20 30 40 50 60 70 80 90 100 ugofr accept0 accept10 accept20 accept30 accept40 accept50 accept60 accept70 accept80 accept90accept100 SumAccept 5000 1 1 1 1 1 1 1 1 1 1 1 100% 4000 1 1 1 1 1 1 1 1 1 1 1 100% 2000 1 1 1 1 1 1 1 1 1 1 1 100% 5000 1 1 1 1 1 1 1 1 1 1 1 100% 3000 1 1 1 1 1 1 1 1 1 1 1 100% 5000 1 1 1 1 1 1 1 1 1 1 1 100% 5000 1 1 1 1 1 1 1 1 1 1 1 100% 5000 1 1 1 1 1 1 1 1 1 1 1 100% 5000 1 1 1 1 1 1 1 1 1 1 1 100% 5000 1 1 1 1 1 1 1 1 1 1 1 100% 5000 1 1 1 1 1 1 1 1 1 1 1 100% 5000 1 1 1 1 1 1 1 1 1 1 1 100% 5000 1 1 1 1 1 1 1 1 1 1 1 100% 5000 1 1 1 1 1 1 1 1 1 1 1 100% 5000 1 1 1 1 1 1 1 1 1 1 0 91% 5000 1 1 1 1 1 1 1 1 1 1 0 91% 6000 1 1 1 1 1 1 1 1 1 1 0 91% 5000 1 1 1 1 1 1 1 1 1 1 0 91% 5000 0 1 1 1 1 1 1 1 1 1 0 82% 5000 0 1 1 1 1 1 1 1 1 1 0 82% 8000 0 0 1 1 1 1 1 1 1 1 1 82% 5000 0 0 0 1 1 1 1 1 1 1 1 73% 4000 0 1 1 1 1 1 1 1 0 0 0 64% 5000 0 0 0 1 1 1 1 1 0 0 0 45% 3000 0 0 0 1 1 1 1 1 0 0 0 45% 5000 0 0 0 0 1 1 1 1 0 0 0 36% 0 0 0 0 0 0 1 1 1 0 0 0 27% 5000 0 0 0 0 1 1 0 0 0 0 0 18% 0 0 0 0 0 0 1 1 0 0 0 0 18% 5000 0 0 0 0 0 1 0 0 0 0 0 9% % Acceptance % Rejection 60% 40% 70% 30% 73% 27% 83% 17% # ) 90% 10% #! < ! . ! ! , . ! 93% 7% ! . . 1 ! . # . ! # E . / # /. . / "" E 34 6/ . # . ! ! ( 5 3 ' %D8 ! , # # ! . # ! ! > 53% 47% ! . . # # 1 # # . < 73% 27% > ! . 73% 27% >2B @@ / . 90% 10% # )/ ! . 44F 100% 0% . . ! . / 3 1 6 ! ! ! H . ! . # • • • • • • • • • • • • / ! ! $% $% $ $% ( ) $ ( $% * ) ( + $% $ # ( $ % $ ! . #! #! ! # D ! ! # ) " " # & ' & B + , # % & / / # ; • • • • • • • • • • • • ( ( ( ( . # $% #! ! " & % & ( ( + $% $% $ $ % $ $& % . . # . 44F 9 ! , ! / / ( . 44F #! ! / ! # . . This player knew he could reject any offer he/she wished but had decided to accept any offer. " • • • • • • • • • • • • • $% $ % $% / $ % ( ( & . & $ & & ) % # . / . ! . ! ( 5 ! ! # % #! ! . 6 #! !/ ! # 1 2B ! /. 2 # . # # H ' B # / > % 3> F . . / &4F . > # . 1 !/ . . ! / .4 .6 . % # 4F ! , # > % Fraction . . . .2 # , ! /. # 0 > % 0 ' 10 20 4 ' MAO 30 > . 3 7B / ! # % # ! , 4 ! # 40 # . >2B /. 50 3> %6 ! >2B , , #! ! 1 ! 1 6 B / ! # # # . ;;;6 4 /. . ! !# . ,# ! 3' . . ! / 4 ! /. ! . ! . . # & ! 4F ! % # N ' ! $4F . # # +F . ' # / 44 5' >2B ! # ! B #! / &4F ! 4F ( ! # ! 7B !#! 6. # . #! % ! 3M 444/ M 444/ M 444/ M 4446 #! ! E . . 7B >2B . 4F # . ! # ; / ! #! ! . . . ! " # ( ! # # / . 10 ! 3 ! ! 4F 3M 4446 #!M 444 #!' ' # . ! /. /. / ! 4F ! ! 3' / 44 6 H ! !# ! ! ,; . #! . 3M$4446 4F/ ! #! & $F ; # . # # "! > , >2B , It is not argued here that reciprocity is not playing a role in the experiments or in the daily social exchange of this society. On the contrary, reciprocity plays a major role for this group. Further, it will be argued later that ex-post incentives outside of the field lab but within the subjects’ group may also play a key role, as discussed in Cardenas (2004). 11 There was one player 3 who had chosen to punish a 50% offer and not punishing the rest of superior offers. These decisions were double checked with participants during the decision stage. ! . / ! E . / ! / ! . , # /. . . # . 37B/ >2B #! 6 # # B / # # /. # #! . 6 !3 / . / E / @ # 3 # 6/ # /. #! # 0 /7 B # . /E # # , /2 % # 3 # . #! ! ! 6" . 4F / 4 % * / /. . / # . # # ! / D # # >2B/ 1 1 7 ! 3> %6 # ! ! @ #! . D . . B ! . /. . /. # #! ! . / @ # . 2 B 3 # 6" H / / ! . /. . # @ . 4 7 . B . 2 B . ! / % ! . ! . $4F % / > . (/ . # % 3> %6 6" 2 3$6 . /# ! :, ! F > # H ( . # &4F / / > % @ ! # 1 > % # ! ! . # , ! 3 7 ! . / 3 # ! H # . / 6" # / # ! # . . ! 7B >2B . # / . . # 1 !. . 7B / . / . . # /. . . !/ # . , >2B . ! < . . # I . # # ( . / ! ! ! . . E < @ / . ! . . / # # / /# #! ! # # # # / ! # . ! / / @ # # # # 12 ! / . # In Cardenas (2004) a series of trust game experiments are reported where college students are recruited across 4 campuses and the only available information they have about the other player is the university affiliated with, which maps accurately with the predicted socio-economic status of the others. Offers by player 1s were smaller when they came from higher socio-economic status private universities, and especially when they were offers made to to students in public universities with middle and low income populations. , 7! * / 2 / / ! " ! , # , # # # ! " / ! / . ! / ! 1 ! . . 1 ' # # / # / ! , # / 3 ;;;6 . ! 2 # ! ! !. # # ! #!' ! ! . ! . !! ! !% # / 1 / # !3 ! ! ! / !6 ! ( #! # ! . # # 7 2 / #! ! O# . # 7 . ! ! . !P ! # 13 . / #! # ! . / ., . !/ B ! ! ! # ! ! !# ! / ! !/ # / . !> 2 B ! Restrepo (1996) describes how the catch from a fishing day that does not go to local market, and is kept for the household is often used to share with relatives, friends and neighbors who may not have immediate access to fishing resources: “Los peces que se destinan para el autoconsumo, se utilizan tanto para el consumo doméstico como también pueden distribuir a los parientes o amigos cercanos que no tienen es ese momento acceso a ellos, o sea, que circulan por las redes de reciprocidad anotadas para el caso de la cacería o de la recolección”. 9 /> 3* = ,B @ / 44$6/ 1 $4F ! #! . . ! ! ( 1 !#! . O0 1 . ! * ! ! : P. ! 3 44 6 . H / ;)F . ! # # . E . @ ! B! . . ( ! ! ! /! . B! ! 1 ! $4F # . , # ' 2 / / # 1 . $4N$4 # 7 #! ! : 2 . / . ) 4 ! / $4,$4 / / ! , . # ! 1 ! 3 E . ! 1 / /# !# . . # ! , / . ! . ,# . ! # # . . ! , , ! ! , / . !. ! ! . ! #! ! #! >2B ! ! ! # 6 # ! . ! - @@ ! # #! ( . / # # /. ! / ! ! ! ( ! ( . ! T% . / ! # ! !/ ! # ! , ! ! !. ! , ! > ! # ! >2B . ! / . 2 " ! ! # I / , ( / ! # / . ! /. ! . !/ . ( . ( ! 7B . . / . >2B . . # 3 / . . .! # / 3 6 # # ! ( . 3 !. . # ( ! . ! . # !. . 7B / # ! . ( / 44 6 . 6 !* # 3#! 6 # ( >2B . ( . ! . / , / - # . , % . ( ! ! / # . , # ! % . ( # # , ! # # . # . . . , . . ! 5* ( ! ! # # 3 44 6 / / . ! 3- / 44 6 ! . , . ! ! . , 6/ ! 3 . # , ' / ! . ! # # . ! ! . . . /. 14 . / @ . / # # * @A . / Notice that while wealth has a negative effect on offers in DG and SMUG, education has in fact a positive effect. Since education and wealth are not correlated for this group, one could reject the argument that wealthier people behave closer to the homo-economicus prediction because they understand better the incentives and the rules of the game. * @A # . /. . ! , / . # . # . , . ! ! /. . * @A @ /# . # ' . . # * @A 3 #! ! $4N$4 /. AMARALES ! $4N$4 * @A / . 6 . / BAZAN Frequency 0 50% 0 ' 7 A! B 50% 0 Offers in 3PP # #! " = ! 3 6 * @A 3 6 ! ! . ! #! ' . (/ . / . / / ! ! . ! . ( . ( # !: # ! , / ;;+6 3% ( # 3 ;;&6 / ! / * . ( !. # . ( . # !, . #! . ! 6 3 . . # # . 1 6 ( . ! 3 / ! / / / 2 . 3 ;;&6, #! . / E . , / # . / I O # . # . / . #!: # P. #! # # . ' !! # !/ / / / : # 3 ;;&6/ ! # " . ! #! # “Relatives, compadres and friends are accustomed to give each other whatever food which they have on hand over and above the immediate requirements of the family, especially to those who are known to be need. Any individual can relate he names of many person to whom at one time an another he has given food; some of these have eventually reciprocated, while the others may be called on when the need arises. As an instance of the way in which it works, the case may be cited of man who, though his neighbors declared that he had once been in a comfortable situation, had been without work for sometime. Though he has no money his prospect of job were rather dim, both he and his wife seemed well fed. He was very much given to talking long walks, at the end of which he would inevitably return home with several large plantains, yuca, and the like, announcing that by chance he had encountered a friend who, after inquiring about his family an determining in the typically indirect way that the informant was in need, has given him these gifts. In conversation, it become clear that the one who had given him the food had in the past been in the same situation, and had benefited from similar gifts of food.” (Price, 1955: 20). 0 * 2 !/ 7 0 H /: U - ' ! /> * . / % # !- " :! V - # ,: ! / W 9 P B > : 3 44 6 O 0 N 44 N /- ' B # B N > " P > Z /G > ( & 3> 6" )$, X @3 44$6 O Y $N4$ B > H / # E ! " 3 44 6 O> P/ ' ' - 7 " - 0 P G * ( !/ 9 "NN... - / 3 ;;+6 O * = ,B @ / # 5: " B! ! ! T: 1 - > , $/ 44 3 44 6 [: H [G E 3 44 6 - " 9 7 )43 6" & , +; - /G ! # /G U > /G ,' - > # ![ ' / N?1 X" !W / N- V -%< 2 ' # E * /WB - 7 - 9 # 4/ 7 3 44 6 O , $ 3 44 6 & I+) V < < ! 3 44 6 P < 4 ' - / U PJ # P " 7< 3 44 6 O X # P 7 V * / 3 44 6 [ 4/ 3 44 6" );, ;$ 3 44 6 [ 9 /: "NN ' H , 9 - /- > !G / ;;; O ! ' / + ),+&+ /- / $/ )I E /G 3 44 6 O' /: # ' 7 9 /G W: :X ! ! * X > < ! % / * !/ E , 2 ! 3 6 3 ;;&6 O: P Y * A" 2 *< ;$+ , ;$; &, ,$ B / *<" 4 ;; & 4$$ "B B < - # , ! . ; 3 6 3> 6 3 ;;&6 : Y * A" 2 X! V 6" , X 3 ;; O X /> /E # N : / ' < 3 ;;+6 O # : / 3 ;;& 6 O0 9 00 / G W : : %/ 3 :X ! ! * X > / / P / - 3 44 6 2 "NN... < : * . /!" P % # /' # P " [B - B < O - X !E 7 0 < # , P 2 X/ ;;& 3 ;$$6 O P 7 ;$$ 3#!: " < / ;; ! # . 2 ! # 2 ! Appendix I: Regression results (explaining offers in DG, SMUG, 3PP and MAO in the SMUG) Variables (divided by Std.Deviations) Age Female dummy(a) Education Individual income (USD) Household wealth (USD) Household size Constant (1) perc_offerdg (2) perc_offerdg (3) perc_offerdg (4) perc_offerdg 1.47 (3.43) 4.69 (6.73) 9.36 (3.82)** 1.05 (2.96) -5.17 (2.54)* 11.04 (2.84)*** 5.47 (18.48) 30 0.009 0.37 4.19 (6.51) 8.27 (2.80)*** 0.97 (2.91) -5.28 (2.48)** 10.89 (2.77)*** 11.43 (11.90) 30 0.004 0.39 8.21 (2.76)*** -0.19 (2.25) -5.33 (2.45)** 10.56 (2.69)*** 16.46 (8.88)* 30 0.002 0.40 8.23 (2.69)*** Observations Model significance (p-value) Adjusted R-squared Standard errors in parentheses * Significant at 10%; ** significant at 5%; *** significant at 1% (a) (not divided by std.deviation) Table A.1. Dictator Game offers explained by demographic variables. -5.34 (2.39)** 10.56 (2.64)*** 16.24 (8.34)* 30 0.001 0.43 Variables (divided by Std.Deviations) Age Female dummy(a) Education Individual income (USD) Household wealth (USD) Household size Constant (1) per_ugofg (2) per_ugofg 5.23 (1.99)** 3.08 (3.90) 8.71 (2.21)*** -1.52 (1.72) -4.93 (1.47)*** 4.48 (1.64)** 15.24 (10.70) 30 0.001 0.49 4.96 (1.94)** 8.46 (2.17)*** -2.36 (1.33)* -4.98 (1.46)*** 4.21 (1.60)** 19.92 (8.85)** 30 0.000 0.50 Observations Model significance (p-value) Adjusted R-squared Standard errors in parentheses * Significant at 10%; ** significant at 5%; *** significant at 1% (a) (not divided by std.deviation) Table A.2. Strategy Method Ultimatum Game offers explained by demographic variables. Variables (divided by Std.Deviations) Age Female dummy(a) Education Individual income (USD) Household wealth (USD) Household size Constant (1) mao (2) mao (3) mao (4) mao (5) mao 8.12 (3.61)** 2.57 -7.69 4.69 -3.72 5.79 -4.01 6.27 (3.26)* -0.84 -3.49 -27.22 -18.42 30 0.193 0.11 8.23 (3.53)** 7.16 (3.47)** 7.62 (3.45)** 6.89 (3.18)** 4.62 -3.65 5.15 -3.47 6.29 (3.20)* -0.78 -3.42 -25.02 -16.89 30 0.12 0.14 3.34 -3.19 6.05 (3.23)* -1.6 -3.4 -9.95 -12.13 30 0.124 0.12 5.98 (3.23)* -2.02 -3.38 -5.58 -11.4 30 0.1 0.12 5.81 (3.18)* Observations Model significance (p-value) Adjusted R-squared Standard errors in parentheses * Significant at 10%; ** significant at 5%; *** significant at 1% (a) (not divided by std.deviation) -9.06 -9.67 30 0.049 0.14 Table A.3. Minimum Acceptable Offers (MAO) by Player 2s in the Strategy Method Ultimatum Game. Variables (divided by Std.Deviations) Age Female dummy(a) Education Individual income (USD) Household wealth (USD) Household size Constant (1) tppofg (2) tppofg 1.65 (2.82) 8.37 (6.27) -3.86 (2.75) -3.95 (3.03) 5.91 (3.01)* 1.68 (2.87) 33.25 (12.48)** 31 0.24 0.043 7.55 (5.96) -5.05 (2.54)* -4.58 (2.95) 5.24 (2.85)* 1.71 (2.82) 41.11 (9.38)*** 32 0.26 0.023 (3) tppofg -4.61 (2.55)* -6.41 (2.60)** 4.53 -2.83 2.41 -2.79 44.21 (9.16)*** (4) tppofg (5) tppofg -4.69 (2.62)* -5.39 (2.59)** -5.39 (2.66)* -5.64 (2.66)** 4.32 -2.59 41.8 (9.28)*** 54.83 (5.15)*** Observations 32 32 Adjusted R-squared 0.24 0.2 Prob > F 0.02 0.025 Standard errors in parentheses * Significant at 10%; ** significant at 5%; *** significant at 1% (a) (not divided by std.deviation) Table A.4. Third Party Punishment Offers explained by demographic variables 32 0.15 0.034 (6) tppofg -4.61 (2.55)* -6.41 (2.60)** 4.53 -2.83 2.41 -2.79 44.21 (9.16)*** 32 0.24 0.02 36
© Copyright 2026 Paperzz