1 2 Crawford School of Public Policy Centre for Climate Economic & Policy Brown coal exit: a market mechanism for regulated closure of highly emissions intensive power stations CCEP Working Paper 1510 November 2015 Frank Jotzo Crawford School of Public Policy, Australian National University Salim Mazouz EcoPerspectives Pty Ltd Abstract In this paper we propose a market mechanism for regulated exit of highly emissions intensive power stations from the electricity grid. The starting point is that there is surplus capacity in coal fired power generation in Australia. In the absence of a carbon price signal, black coal generation capacity may leave the market instead of high emitting brown coal power stations. We lay out options for a mechanism of regulated power station closure using a market mechanism. Plants bid competitively over the payment they require for closure, the regulator chooses the most cost effective bid, and payment for closure is made by the remaining power stations in proportion to their carbon dioxide emissions. This could overcome adverse incentive effects for plants to stay in operation in anticipation of payment for closure and solve the political difficulties and problems of information asymmetry that plague government payments for closure and direct regulation for exit. We explore the issues theoretically and provide empirical illustrations. These suggest that closure of a brown coal fired power station in Australia could yield emissions savings at costs that are lower than the social benefits. The analysis in this paper is applicable to other countries. |T H E A U S T R A L I A N N A T I O N A L U N I V E R S I T Y Keywords: Greenhouse gas emissions, electricity, brown coal, early retirement, regulation, market mechanism, contract for closure. JEL Classification: Q48, Q58 Suggested Citation: Jotzo, F. and Mazouz, S. (2015), Brown coal exit: a market mechanism for regulated closure of highly emissions intensive power stations. Economic Analysis and Policy, (Journal of the Economic Society of Australia (Queensland)), forthcoming. Address for Correspondence: Frank Jotzo, Crawford School of Public Policy, Australian National University, Lennox Cr, Canberra ACT 0200, Australia, [email protected]. The Crawford School of Public Policy is the Australian National University’s public policy school, serving and influencing Australia, Asia and the Pacific through advanced policy research, graduate and executive education, and policy impact. The Centre for Climate Economics & Policy is an organized research unit at the Crawford School of Public Policy, The Australian National University. The working paper series is intended to facilitate academic and policy discussion, and the views expressed in working papers are those of the authors. Contact for the Centre: Dr Frank Jotzo, [email protected] 3 Browncoalexit:amarketmechanismforregulatedclosureofhighlyemissionsintensive powerstations FrankJotzo,SalimMazouz ForthcominginEconomicAnalysisandPolicy Abstract Inthispaperweproposeamarketmechanismforregulatedexitofhighlyemissions intensivepowerstationsfromtheelectricitygrid.Thestartingpointisthatthereissurplus capacityincoalfiredpowergenerationinAustralia.Intheabsenceofacarbonpricesignal, blackcoalgenerationcapacitymayleavethemarketinsteadofhighemittingbrowncoal powerstations.Welayoutoptionsforamechanismofregulatedpowerstationclosure usingamarketmechanism.Plantsbidcompetitivelyoverthepaymenttheyrequirefor closure,theregulatorchoosesthemostcosteffectivebid,andpaymentforclosureismade bytheremainingpowerstationsinproportiontotheircarbondioxideemissions.Thiscould overcomeadverseincentiveeffectsforplantstostayinoperationinanticipationofpayment forclosureandsolvethepoliticaldifficultiesandproblemsofinformationasymmetrythat plaguegovernmentpaymentsforclosureanddirectregulationforexit.Weexplorethe issuestheoreticallyandprovideempiricalillustrations.Thesesuggestthatclosureofabrown coalfiredpowerstationinAustraliacouldyieldemissionssavingsatcoststhatarelower thanthesocialbenefits.Theanalysisinthispaperisapplicabletoothercountries. Keywords:greenhousegasemissions,electricity,browncoal,earlyretirement,regulation, marketmechanism,contractforclosure. Contactdetails:FrankJotzo,CrawfordSchoolofPublicPolicy,AustralianNationalUniversity, LennoxCr,CanberraACT0200,Australia,[email protected], EcoPerspectives,[email protected]. Acknowledgements: The idea laid out in this paper was discussed in outline form with a number of colleagues and experts. We also received helpful referee comments. Thanks to all. 4 1. Introduction Manyoftheworld’selectricitygridshaveageingandhighlycarbondioxideemissions intensivecoal-firedpowerplants.Theshortrunmarginalcostsofthehighlyemissions intensivebrowncoal(lignite)powerplantsarelowcomparedtoblackcoal,gasandliquid fuelpowerplant(buthigherthanrenewables).Thisisthecasesincethereoftenisno alternativeuseforthebrowncoalminedinproximitytothepowerstations.Consequently browncoalplantsoperateforsignificantperiods,increasingtheemissionsintensityof electricitysupply.ThisisthecaseforAustralia’sfleetofbrowncoalfiredpowerstations (Ellistonetal.,2013;Byrnesetal.,2013),andsimilarexamplesexistinothercountries(for exampleGermany,seeIEA,2011;TraberandKemfert,2011). Wherethereissufficientavailablecapacityinlower-emissionsplants,theseplantscouldbe closeddownwithbenefitsintermsoflowercarbondioxideemissions,andlessenedlocalair pollutionandotherbenefitsforlocalamenity,includingfromceasingassociatedopen-cut miningactivity.Howeversuchclosuremaynotnecessarilyhappenwithoutpolicy interventioneveninthefaceofovercapacity.Firstly,browncoalfiredplantstypicallyhave lowershort-runmarginalcostsofoperationthanthelower-emissionsalternativeofblack coalandgasplants.Thesemarginalcostsdominateproductiondecisionsbecause investmentsweremadeinthepastandarenowsunk–inotherwords,onceplantsand minesareestablished,theoperatingcostsofcoalplantsaremainlyafunctionoffuelcosts. Secondly,thereisageneralimpedimenttoexit:ifoneplantexitsthemarket,theremaining oneswillreceivehigherrevenues.Thisactsasadisincentivetoclosureaseveryoperatorhas anincentivetodeferclosureinthehopethatanotherplantwillclose.Evenifthegainsto plantsremainingonthegridweretooutweightheforegonegainstotheexitingplant,the ownersofpowerplantswilltypicallynotbeabletoachievesuchanoutcomewithout regulation,eitherbecausetheycannoteffectivelyco-ordinateorbecausecompetitionlaw precludesthemfromsuchcoordinatedaction. TheAustralianNationalElectricityMarket(NEM,thegridspanningthecountry’sEasternand Southernstates)hasovercapacity,asestablishedbyAEMO(2015).Inrecentyears,overall electricitydemandhasreducedwhilerenewableelectricitygeneration–inparticularwind power–hasbeenaddedtothesystem(Figure1).From2007to2014,averagecapacity utilisationfactorsforblackcoalplantsfellfrom63%to53%,forbrowncoalfrom79%to 70%,andforgasfiredgenerationfrom31%to26%(datafromAEMOviaNEMSight). Inthiscontext,theCouncilofAustralianGovernmentsEnergyCouncilconsideredthemerits ofrevivinga‘paymentforclosure’policypursuedbythepreviousgovernment(COAG2014). Thispolicyaimedatprovidingfundstoa(browncoal)generatortoretiretheirgeneration capacitywithaviewtoeasingtheexcesscapacityintheNEMaswellasreducingemissions.1 Avariantofpaymentforclosureofbrowncoalpowerplantsisexpectedtobeimplemented inGermany,withpaymentsof230millioneurosperyearoverasevenyearperiodfrom electricityconsumerstoplantoperatorsinreturnfortaking2.7GWofplantcapacityoutof productionandplacingthestationsinreserve(DeutscheWelle2015). 1 Underthe‘paymentforclosure’scheme,governmentwastomakenegotiatedpaymentstooneor moreplantsinreturnfortheirclosure.Theschemewasannouncedbutnotimplemented. Governmentcitedoverlyhighdemandsforpaymentsasthereasonfornotfollowingthrough. 5 Figure1:EnergysentoutintheNEM,Twh,2007and2014 200 Others 180 160 Wind 140 120 Hydro 100 Gas 80 60 BrownCoal 40 20 BlackCoal 0 2007 2014 Data:ThethirdpartysoftwareNEMSightfromCreativeAnalyticswasusedtoextractAEMOdata(Creative Analytics2015) Intheircommuniquédated11December2014,theCOAGEnergyCouncilstatedtheirlackof supportforacontract-for-closurepolicy: “…Nordoes[thecouncil]supportassistancetogeneratorstoexitthemarket.The Councilconsidersitisforthemarkettoprovidesignalsforinvestmentanddeinvestmentforgeneration,andopposesthetransferralofthecostsofretiringassets ontoconsumersortaxpayers.” TheAustralianEnergyMarketCommission(AEMC2015)alsoarguedagainstinterventionto facilitateplantexit: “Theevidencesuggeststhatanybarrierstoexithavenotdeterredgeneratorsfrom commencingvariousstagesofexitorthefullretirementofplant.Thiswouldsupport leavingittothemarkettodeterminewhichplantshouldexit”. Thesestatementsnotwithstanding,theissueofovercapacityandthepossibilityof governmentinterventiontoachieve‘orderly’exitremainsontheagenda.Forexample, Nelsonetal.(2015)assessbarrierstoexitandsuggestvariouspossiblepolicyinterventions toameliorateoutcomescomparedwithleavingmarketparticipantstomakeexitdecisions. Theyarguethatsomeoperatorsmothballtheirplantsratherthanshuttingthemdown permanently,andthatthisdetractsfrominvestmentinrenewablegeneratingcapacity. Nelsonetal.(2015)seesignificantbarrierstoexitandaroleformeasurestofacilitate closureofpowerplantstoimprovemarketstabilityandinvestmentconditionsinthe electricitysector. Suchconsiderationsareprimarilyconcernedwithmarketstabilityandinvestment conditions,andgenerallydonottakeaccountofclimatechange,orindeedofanyother externalities.Acaseforgovernmentinterventioncouldbemadeongroundsofgreenhouse gasemissions.Forinstance,blackcoalinAustraliahasanaverageemissionsfactorofjust over0.9tCO2perMWhgenerated,whereasbrowncoalbasedgenerationinAustralia rangesfrom1.2to1.5tCO2perMWh,withanaverageof1.3tCO2perMWh.These emissionsfactorshavestayedlargelyunchangedthroughtimeforeachtechnology,however thetotalemissionsintensityintheNEMfellduetothechangesincompositionespeciallythe increaseinrenewablesgeneration(Figure2).Capacityfactors–theshareofactualpower outputcomparedtowhatitwouldbeiftheplantsraneveryhouroftheyearatfullcapacity 6 –hasdeclined,forbrowncoalfiredplantsfrom79%to70%from2007to2014,andfrom 63%to53%forblackcoalfiredplants,onaverage(Figure3). Figure2:EmissionsintensityintheNEM,tCO2/Mwh,2014 1.6 1.4 1.2 1.0 0.8 0.6 0.4 Total(incl renewables) Gas,average BlackCoal, average LoyYangB LoyYangA Yallourn 0.0 Hazelwood 0.2 Victoria'sbrowncoalplants Data:ThethirdpartysoftwareNEMSightfromCreativeAnalyticswasusedtoextractAEMOdata(Creative Analytics2015) Figure3:CapacityfactorsintheNEM,2007and2014 0.9 0.8 2007 0.7 2014 0.6 0.5 0.4 0.3 0.2 0.1 0.0 BrownCoal BlackCoal Gas Data:ThethirdpartysoftwareNEMSightfromCreativeAnalyticswasusedtoextractAEMOdata(Creative Analytics2015) Ifmarketoutcomesledtotheclosureofblackratherthanbrowncoalgenerationcapacity, emissionscouldbesignificantlyhigherthanifbrowncoalplantsclosed. Thatsaid,aprimafaciecaseforinterventiondoesnotmeanthatanyinterventionthat achievesthedesiredprimaryoutcomeiswelfareenhancing.Inthecaseofthepaymentfor closurescheme,Rieszetal.(2013)questionitsmeritsandconcludethatitshouldnotbe pursued.Theirmainargumentisthatpaymentsforclosuremaycreateaviciouscyclethat exacerbatesbarrierstoexit.Theyarguethatpowerplantoperatorswillbelookingtoget 7 paidtoexitoncetheexampleisset,postponingexitbecauseofperceivedchancesoffuture governmentpayments. Policyinterventionaimedtofacilitateearlyretirementofpowergenerationplantmustbe welldesignedandimplemented.Ifnotthereisthedangerofwastingtaxpayers’or consumers’moneyandintroducingperverseincentives. Economictheoryholdsthatabsentspecificdistortionsormarketfailures,thefirst-best policyinterventionisacarbonprice,throughanemissionstradingscheme,carbontaxor similararrangement,especiallyifitgeneratesrevenuethatcanbeusedtoreduceother taxes(HelmandPearce1990,Parryetal1999).Acarbonpriceatasufficientlevelcanresult insocietallyefficientexitofhigh-emissionsplants,astheoperatingcostsofthehighest emissionsintensiveplantsareincreasedbythegreatestamount.Bycontrast,additionof renewableenergycapacitymaynotresultinefficientexitoutcomesasitwilltendtoreduce revenueforallexistinggeneratorsandmaydrivelower-emissionsplanttoclose. AcarbonpricewasinplaceinAustraliaduring2012-14butwasabolished.Existingpolicies aimedatreducingemissionsincludetheRenewableEnergyTarget(aportfoliostandardwith tradablecertificates)andtheEmissionsReductionsFund(agovernmentfundedschemeto subsidiseagreedactionstoreduceemissions).Neitheroftheseresultsinincentivesfor emissionsintensivepowerplantstoclose.YetAustraliahasanemissionstargetinplaceofa 26to28%reductioninemissionsfrom2005to2030.Tobeontracktomeetthistarget throughdomesticreductionswouldrequirecomprehensivechanges,andwouldlikely includethecessationofusingbrowncoalforelectricitygeneration(Denisetal2014). Intheabsenceofaneffectivecarbonpricingsignal,closurebyoneormoreplantscouldbe achievedthroughdirectregulation.Howeverinlightofrecentexperiencewiththepolitical economyofclimatepolicyinAustraliaitappearsunlikelythatagovernmentwouldchoosea pureregulatoryapproachthatsinglesoutpowerstationsandimposesthefullcostofearly closureontheownersofthatstation.Thealternativeofgovernmentpaymentsforclosure suffersfromthedownsideslaidoutaboveandwouldinvolveundesirableon-budget transfers. Inthispaper,weinvestigateoptionsforpolicyapproachesthatovercomethedifficultiesof directregulationandgovernmentsubsidiesforclosure.Weproposeamarketmechanism forregulatedclosureofhighlyemissionsintensivepowerstations.Theschemewouldusea marketmechanismtoidentifythemostcosteffectiveplanttoclosedownandsourcethe paymentsfromtheremainingpowerstations.Thiswouldbedoneinawaythatwould providefurtherincentivesforreducingemissionsbytheremainingpowerplantfleet.We arguethatsucharegulatedmarketmechanismscouldsolvethepoliticaldifficultiesand problemsofinformationasymmetrythatplaguegovernmentpaymentsforclosureand directregulationforexitrespectively.Weprovideempiricalillustrationsthatsuggestthat theclosurecostsarelowerthanthelikelysocietalbenefitsofclosure. Weintendthispaperasastartingpointforfurtherresearchandtoinformpolicy considerations.Thepaperalsoprovidesanoverarchingcontributiontotheliteratureon policymechanismsfortransitionofelectricitygenerationinfrastructure. Section2establishestherationaleandproposesamarketmechanismforregulatedplant closuredesignedtoachieveplantexitthattakesintoaccountcarbonemissions.Section3 providestheoreticalconsiderationsandlaysoutvariousaspectsoftheproposed mechanism.Section4containsempiricalillustrations.Section5concludes. 8 2. Amarketmechanismforregulatedplantclosure IfthecaseforpolicyinterventiontocloseoneofVictoria’sbrowncoalfiredgeneratorsas laidoutaboveisaccepted,thenthequestioniswhichpolicymechanismtoapply.Threeinprincipleapproachesexist(Nelsonetal.2015):governmentfunding(orsubsidies)forplant closures,amarket-basedsolution,ordirectregulation. Herewedescribeanapproachthatisahybridofdirectregulationandmarketmechanisms. Theargumentagainstpaymentsforclosure AsshowninSection3,itisreasonabletoexpectsignificantemissionssavingsintheNEMas aresultofclosureofoneofVictoria’slargebrowncoalfiredplants. InprinciplesuchpaymentsforclosurecouldbeaccommodatedundertheEmissions ReductionsFund(ERF).Howevertherearestrongargumentsagainstpaymentsforclosure, whetherundertheERForunderaseparatearrangement. Firstly,asRieszetal.(2013)havepointedout,payments-for-closureschemescanleadto unhealthyexpectationsoffutureindustrysubsidiesfromgovernmentandthereforea deferralofplantclosuredecisionswithassociatedemissions. Secondly,thepoliticsofpayingsignificantsumsoftaxpayers’moneytotheownersofold, highlyemissionsintensivepowerstationswouldbehighlyproblematic.Italsodoesnotfit thenarrativeofthepresentEmissionsReductionFund(ERF)mechanisms,whichisoneof subsidisingbusinessestakingpositiveactionstomovetocleanerproductionprocesses,not ofcompensationpaymentstosunsetindustries. Objectivesandconstraintsforamechanismforplantclosure Giventhepremisethatthereisacaseforpolicyinterventionforplantclosureinorderto reducegreenhousegasemissions,someobjectivesandconstraintsforapolicymechanism canbeidentified. • • • • Closinghighlyemissionsintensiveplants. Toachievemaximumsystem-wideemissionssavings,theclosureschemeshould applytolargehighlyemissionsintensiveplants.InthecaseofAustralia’sNEM,four browncoalfiredgeneratorsinVictoriaareconsiderablymoreemissionsintensive thanotherpowerstations,andproducelargeamountsofelectricity. Minimizingcostofemissionssavings. Iftheprimaryobjectiveistoachieveemissionsreductions,theplant(s)withthe lowestforegoneexpectedfutureprofitsperunitofexpectedemissionssavingsfrom closureshouldshutdown. Overcominginformationasymmetries. Theownersofgenerationassetshaveaninformationaladvantageovertheregulator regardingthecostofoperatingtheirplant,andhenceexpectedfutureprofitsfrom continuedoperation.Governmentisthereforeatadisadvantageinanynegotiation withindividualpowerstationowners.Governmentmaynotbeinapositionto identifythemostcosteffectiveclosureoption.Forexample,theoldestormost emissionsintensiveplantmaynotalwaysbethebestplanttoclosefirst.A competitivebiddingsystemasdiscussedheremayovercomethesedifficultiesand allowanoptimalchoiceofplantforclosure. Nogovernmentsubsidies. Aslaidoutabove,therearestrongargumentsagainstgovernmentpaymentsfor plantclosure. 9 • • • Harnessingrevenuegainstoplantsthatremaininoperation. Ifalargegeneratingplantcloses,thiscanbeofsomefinancialbenefittotheplants thatremainonthegrid,becauseatthemarginitwillmeanhighercapacity utilizationratesandalsomarginallyhigherelectricitypricesinthespotmarket.The natureandextentofthelikelyeffectswouldneedtobeassessedindetail. Complicationsincludethat,givenovercapacityinthemarketasitstands,theclosure ofabrowncoalfiredgeneratormayallowa(blackcoal)generatorthatmay otherwisehaveexitedtoremaininoperation.Nonetheless,ifthemarginalcostof operationishigherfortheplantthatwouldotherwisehaveexited,someupliftin spotmarketpricesduringparticularperiodsoftimecouldoccur.Also,someprice upliftcanbeexpectedifpaymentsforclosurearecoveredthroughanoutputdependentchargeonoperatingplants,asproposedinthispaper. Providingincentivestoreduceemissionsonthegrid. Amechanismforplantclosurealsoprovidestheopportunitytosetincentivestothe remainingplantstoadjustoperationsinawaythatsavesemissions. Providingstructuralassistancetoworkersandregions. Closureofpowerstationsandminesmeansjoblosses,whicharetypically concentratedinrelativelysmallregionalcommunities.Unmitigated,theselocalized economicandsocialeffectscanbeasignificantpoliticalhurdletoregulatedclosure. Closureshouldbeaccompaniedbyprogramstofacilitateretrainingand resettlementofworkers,andstructuralassistancetoaffectedtowns.Furthermoreit needstobeassuredthatthesitesofpowerstationsandassociatedminesare remediatedtomakethelandavailableforotheruses,andtoastandardacceptable tothecommunity. Outlineofamarketmechanismforregulatedclosure Onthebasisoftheobjectivesandconstraintslaidoutabove,weproposeamarket mechanismforregulatedpowerplantclosure. Theprincipleoftheproposedmechanismisthatgovernmentofferpowerplantsthe opportunitytobidfortheclosureofsomeamountofcapacity,leavingittothebidding processtodeterminewhichplant(s)willcloseandwhatthemagnitudeofthepaymentto theclosingplantis.Theremainingplantsarethenmandatedbygovernmenttomake financialtransferstotheplantthatexitsthemarket,inlinewiththeiremissions. Suchamechanismwould:provideemissionssavingsfromplantclosureatleastcost;relyon amarketmechanismtoidentifywhichplantshouldcloseandwhatmagnitudepaymentis required;avoidbudgetarycostsbysourcingthepaymentsforclosurefromtheplants remaininginproduction;andprovidesomeincentivestoadjustthepowermixtoreduce emissions. Identifyingwhichplanttoclosethroughcompetitivebidding Theclosureofagivenamountofhigh-emissionsgeneratingcapacityinpracticewouldmean closureofoneormorebrowncoalfiredgeneratorsinthestateofVictoria.Therearefour mainplants.Theyrangeincapacitybetween1.2GWand2.3GW,andin2014hademissions factorsofbetween1.21to1.52tCO2/MWh.Bycontrast,averageemissionsintensityover thesameperiodfortheaverageblackcoalplantintheNEMwas0.91tCO2/MWh(NEMSight usedtoaccessAEMOdata,CreativeAnalytics2015).(Table1) 10 Table1:ThefourlargebrowncoalgeneratorsinVictoria Hazelwood LoyYangA LoyYangB Yallourn GDFSuez AGL GDFSuez EnergyAustralia Year commissioneda 1964to1971 1984to1988 1993to1996 1974to1982 Capacity,MWb 1,760 2,295 1,585 1,200 Capacity utilisationrate, 2014(%)b 70.8 80.0 71.5 77.1 Electricity dispatched, 2014(GWh)b 9,819 14,630 6,952 9,749 CO2emissions, 2014(kt)b 14,944 17,702 8,606 13,814 Emissions intensity,2014 (tCO2/MWh dispatched)b 1.52 1.21 1.24 1.42 Owner(Nov 2015)a Notes:a)Sourcedfromtherespectivecompanywebsites:Hazelwood-GDFSuez(2015a);LoyYangA–AGL (2015);LoyYangB–GDFSuez(2015b);Yallourn–EnergyAustralia(2015).b)ThethirdpartysoftwareNEMSight fromCreativeAnalyticswasusedtoextracttherelevantAEMOdata(CreativeAnalytics2015). Thedifficultyforaregulatorwouldbehowtoidentifywhichplantshouldcloseinorderto minimizethecostofachievingemissionsreductions.Andevenhavingidentifieda prospectiveplant,aregulatorwouldhavedifficultiesestablishinghowmuchtopaybecause ofalackofinformationaboutcoststructures. Theinformationasymmetrybetweenbusinessesandgovernmentcanhoweverbeovercome throughacompetitivebiddingmechanism.Specifically,thepowerplantsinquestion–inour examplethefourlargeVictorianbrowncoalgenerators–wouldbeinvitedtoeachsubmita bidfortheamountofmoneytheywouldbewillingtoacceptinreturnforclosure.‘Closure’ wouldbedefinedasceasingoperationonapredetermineddate,remediatingthesitetoa predeterminedstandard,andpayingforapredeterminedassistancepackagefortheir workforceandtheregionaltownstheyoperatein.Thebidscouldbeprovidedinasealedbidauction. Theestimationofemissionssavingswouldrelyonanalysisandmodellingbyapublicagency -eitherastatutoryauthorityoragovernmentdepartment.Theywouldbeestimatedforthe closureofeachofthefourplantsseparately,takingintoaccountthelikelysubstitution effectswithintheNEM(seeSection3),thelikelyperiodforwhichtheplantwouldremain operationalifitdidnotexitunderthescheme,andotherrelevantfactors.Theresultsfrom thisanalysiswouldbemadepubliclyavailablebeforethebiddingprocess,sothatcompanies havefullinformationaboutthebasisforevaluationbytheregulator. Oncethebidsarereceived,theregulatorcomputesthecostofestimatedemissionssavings (indollarsofrequestedpaymentforclosuredividedbytonnesofestimatedCO2savings), andchoosesthemostcost-effectivebid(s). 11 Theregulator’sdecisioncouldalsofactorinotheraspectsofpublicbenefitfromclosure, suchasreducedlocalairpollution(egparticulatesandheavymetals),andlocalamenity benefits.Thiswouldbebestdonewithfulltransparencysothatplantownerswouldknow thebasisforevaluationinadvance.Inthispaperwesetasidenon-carbonbenefits. Biddingstrategiesandregulatoryresponses Thebrowncoalgeneratorsbiddingforclosurewouldestimatetheirfutureexpectedprofits underdifferentscenariosofpowerstationclosures.Theoptimalbasisfortheiranalysis wouldbetoestimatetheexpectedfutureprofitsofallfourplantsunderthescenariosfor exitbyeachoneofthem.Eachplantownerwouldthensubmitabidthatleavesitbetteroff thanestimatedunderthealternativewhereitsownbidisnotaccepted. Inthisanalysis,eachbusinesswoulduseitsownbestestimateofitsownprofitsandcosts andthoseofitscompetitors,combinedwiththeinformation(publiclyprovidedbythe regulator)aboutestimatedimpactsonemissionsinthecaseofclosureofeachofthefour plants.CompaniestypicallyownanumberofdifferentgeneratorsintheNEM.Asaresult, thefinancialscenarioanalysis–andhencethebidsforclosure–wouldalsoincludechanges inrevenueandprofitability(typicallyincreases)andrequiredcontributiontotheclosure paymentbyothergeneratorsownedbyacompanythatownsbrowncoalgenerators. Therewouldbeincentivestosubmithighbidstomaximizerevenueincaseofclosure,but alsocountervailingcompetitivepressuretosubmitlowbidsinordertobeselectedfor closurepayments.Bydefinition,havingitsbidacceptedandclosingdownwouldleavethe plantbetteroffthanremaininginoperation.Inflatingthebidincreasesthefinancial advantageifthebidissuccessful,butatthesametimeitdiminishesthechancesofthebid beingsuccessful. Bidscouldbehigherthantheestimatedforegoneprofitsfortworeasons.Firstly,theplant thatconsidersitselftobethelowestcostoptionforclosure–andwhichwouldthusexpect tobeabletosubmitthelowestbid–maychoosetosubmitabidthatisbelowtheclosure costsofitspresumednexthighestbidder,butaboveitsownclosurecosts.Thisisacommon outcomeinauctions. Secondly,thesmallnumberofbidders(notingthattwoofthefourplantsareownedbythe samecompany)couldgiverisetostrategicinteractionsornon-competitivebidding. Aspectsofstrategicbehaviourwouldrequiredetailedinvestigationbytheregulator,and mayrequirethedesignoftheauctiontobecustomized. Theregulatorwouldchoosethebidthatoffersthelowestratioofclosurepaymentto estimatedemissionssaved(in$/tCO2).Otheraspectsofeachbidcouldalsobefactoredinto thedecision. Itwouldalsobepossiblefortheregulatortoreservetherightnottoawardaclosure contractifitdeemedthemostcosteffectivebidtoohighrelativetothepublicbenefit. Paymentbytheremaininggeneratorsinlinewithfutureemissions Theexitinggeneratorwouldreceivethefullamountspecifiedintheirbid,ininstalments overapre-determinedtimeframe(hereweassumeoveroneyear).Thefinancingforthis paymentwouldbesharedamongthegeneratorsthatremaininoperation. Amultitudeofoptionsexistsforapportioningsharesofthepaymenttobemadebythe remaininggenerators,withdifferenteffectsondistributionandincentives. GiventhatallremaininggeneratorswouldbenefitfromsomepriceupliftintheNEM,one optionwouldbeforcontributionstobesharedamongallremaininggenerators,according 12 totheirelectricityoutputduringtheyear(orotherperiod)followingtheclosureofthe chosenbrowncoalfiredplant.Howeverthiscouldbeseentodisadvantagetherenewables andgasfiredpowersector,becauseoneormoreblackcoalfiredpowerplants(insteadof thebrowncoalplant)mighthaveexitedthemarketanyway,withassociatedmarginal increasesinspotmarketpricesbutnopaymentstobemadebyothergenerators. Anotheroptionwouldbetosharecontributionsamongallremainingplantsaccordingto theircarbondioxideemissionsduringtheyear(orshorter/longerperiod)followingthe closureofthechosenplant.Weconsiderthisoptionaspreferable,pendingfurtheranalysis, andusethisscenarioforillustrationbelow. Weidentifythreekeypropertiesofthisscheme. First,thebenefitstogeneratorsfromstayinginthemarketwouldbeoffsetinproportionto theiremissionsintensity,counteractinganyincentivestoremaininthemarketinthe expectationthattheremightbefurtherroundsofpaymentsforclosure(ashighlightedby Rieszetal.(2013)asamaindisadvantageofapaymentforclosurepolicy). Second,paymentsinproportiontoemissionsfollowingtheclosureofoneplantprovidean additionalincentiveforallbrown-coalfiredgeneratorstosubmitlowbidsintheclosure scheme,asthebenefitsfromstayingoperationalarediminished. Third,anincentiveeffectwithintheNEMforamarginalshifttowardslower-carbon generatorswouldbeprovided,astheclosurepaymentwouldeffectivelybefinanced throughalevyonfuturecarbondioxideemissions.Asindicatedbythenumerical illustrationsbelow,thiseffectis,however,likelytobeverysmall. Priceupliftandcostincidence Theultimatecostincidencewouldlargelybeonelectricityconsumers,throughhigherprices intheNEMandpotentiallyhigherpricesinnegotiatedelectricitysupplycontracts.The preciseextentandnatureofcostpass-throughisamatterforfine-grainedempirical modelling.Factorsthatwouldaffectspotmarketprices,withalikelyupliftofpricesinnet terms,includethefollowing: • • • • Changestomarginalcoststructureinthebidstackgivenretirementofalower marginalcostgenerator(browncoal)insteadofexitbyahighercostone(likelyblack coal),giventhelackofacarbonpricesignalundercurrentpolicysettings. Changestomarginaloperatingcostsassociatedwithpaymentonthebasisof emissionsbyremainingplantsmayleadtohigherspotmarketpricesduringsome periods. Effectsoffulldecommissioningofplantratherthanmothballing(seeNelsonetal. (2015)oninvestmentinnewplantsespeciallyrenewables,andassociatedimpacts onwholesaleprices. Anytimediscrepancyofretirementassociatedwiththepolicy.Ifthepolicyinduces abrowncoalplantclosureaheadofwhenitmighthavehappenedtoablackcoal plantwithoutintervention,therewouldbeaperiodofhigherpriceupliftassociated withreducedcapacityoverthatperiod.Conversely,ifthepolicytakeslongertotake effectthanitwouldhavetakenforablackcoalplantclosuretotakeplace,thenthe additionalcapacityforthattimeperiodwoulddepresspricesforlonger.This highlightstheimportanceofmovingquicklyfromannouncementtoimplementation ofanysuchpolicy. 13 Inprinciplethegainstogeneratorsinhigherprofits(givenuplift)couldbehigherorlower thantherequiredpaymentforexittoachievetheclosureofoneofthelargebrowncoal plants.Onlydetailedmodellingwillprovideareliablenetestimateoftheeffectsatplay, especiallyinrelationtoanydisplacementofcapacitythatwouldhavebeenretiredinthe counterfactualcase.Whatisclearisthatthenegativeeffectongeneratorprofitswillbe (weakly)relatedtotheiremissions,providinglittleifanyincentiveforgeneratorstoholdout forfurtherroundsofthispolicytoreceivepaymentforclosure,especiallygiventhe additionalcostsassociatedwithanyexemplaryexitconditions. The(small)electricitypriceimpact,especiallyonlow-incomehouseholds,couldinprinciple beoffsetbytargetedtransfers,changesinelectricitytariffsorbysupportinginvestmentsin energyefficiency.HoweverasillustratedinSection3,thecostimpactswouldlikelybevery small,andcompensatorymeasuresmaynotbeconsiderednecessary.Theelectricityprice increasewouldalsoaffectbusiness,thoughagainthemagnitudeswouldlikelybeverysmall. Structuraladjustmentandsiteremediation Theregulatorwouldsetoutindetailtherequirementsforanassistancepackageforaffected workersandlocalcommunities,aswellasforsiteremediation.Plantownerswouldtakethis intoaccountintheirbids.Ineffectthecostofassistanceandsiteremediationwould becomeacomponentoftheoverallbid,andthusacomponentofthepaymentmadetothe successfulbidder.Theoverallcostofthepackagewouldvarybetweentheplants,depending onsizeandcircumstances. Dynamicaspects Afteraninitialroundofregulatedclosuretherecouldbefurtherroundsinthefuture.The prospectoftheseoccurringwouldaffecttheestimationofallplants’futurerevenue,and thusthebidsinthefirstround.However,ifcontributionsaresharedonthebasisof emissionsintensity,thiswillreducetheeffectofexpectedfutureroundsonthebrowncoal plants. Plantswillconsequentlyfactortheirownexpectationsaboutfutureregulatedclosureinto theirbids.Giventheadverseeffectthatpolicyuncertaintyhasonenergysectorinvestors (Jotzoetal.2013),itwouldbedesirablefortheregulatortoannouncethefullintended scheduleoffutureroundsofregulatedclosureattheoutset. Finally,itmustberecognizedthatagovernment’sannouncementofintenttoimplementa closurepolicycouldprovideincentivesforplantstoremaininoperationthatmight otherwisehavecloseddownwithoutintervention.2Thereforegovernmentsshouldmove swiftlyfromconsultationtoannouncementtoimplementation. 2 Forexample,theNorthernandPlayfordpowerstationsinSouthAustraliaareexpectedtoclosein 2016(AlintaEnergy2015)withoutpaymentsforclosureorotherpolicyintervention,whileitis understoodthattheywerepartofdiscussionsintheearlierabortedfederalgovernment‘paymentfor closure’scheme. 14 3. Empiricalillustrations Hereweprovidesomeempiricalillustrationsofthepossibleeffectsoftheclosureofoneof Victoria’slargebrowncoalfiredpowerstations,inthecontextofthemechanismproposed inSection2. Estimatingemissionssavingsfromplantclosure Onekeydeterminantoftheemissionssavingstobeexpectedistheextenttowhichclosing downabrowncoalgeneratordisplacestheclosureofotherplants.Indeed,assumingthat theanalysisbyAEMO(2015)thatthereisovercapacityiscorrect,andtheassessmentbythe AEMC(2015)andothers(egRieszetal2013)thatplantexitisoccurringinresponsetosuch overcapacityisalsocorrect,thenregulatedclosureofabrowncoalplantwillessentially displacetheclosureofotherplants. Thisdoesnotnegatethebenefitstointerventionsoughthere,namelytoachieveexit outcomesthatareconsistentwiththepublicinterestgiventhelackofcarbonpricesignalsin theNEMatpresent.Indeed,theintentionoftheschemeistoaddresstheproblemthatthe relativeprofitabilityofemissionsintensiveplantsisinflatedcomparedtoloweremissions plants,givenlackofcarbonpricesignals.Withoutintervention,loweremissionsplant(black coal)mightberetiredwhilehigheremissionsplants(browncoal)remaininthemarket,with adverseeffectsontheemissionsintensityofoverallpowersupply.Withacarbonpricein place,thereversecanbetruedependingonthepricelevel. Tohaveconfidenceincalculatedemissionssavingsfromclosingaspecificpowerplant,a comprehensivemodelingexercisewouldneedtobeundertaken,takingintoaccountthe complexityoftheelectricitymarketincludingelectricitysupply,bidsandpricesatshorttime intervals,andcomparingthepolicyscenarioswithcounterfactuals. Hereweprovidesomeboundingcalculations,whichcanbeusedtoillustratethemagnitude ofemissionssavingsavailable. Assumingthattheexitofabrowncoalgeneratorsimplyoffsetstheretirementofablack coalgenerator,emissionssavingswouldbeafunctionofthedifferencebetweenblackand browncoalemissionsperMWhgeneratedandanychangestothegenerationmix. Asanillustrativeexample,ifoneofthehigheremissionsbrowncoalplants(Hazelwoodor Yallourn)weretoexit,andusinggenerationfiguresfor2014,avoidedgenerationwould amounttoabout9.7GWhperyearwithassociatedemissionsofabout14MtCO2.Equivalent blackcoalgeneration,ontheblackcoalfleetaverageemissionscoefficient,wouldgiverise toabout7.6MtCO2peryear.Thusthefirst-roundemissionssavingfromclosinghigh emissionsbrowncoalratherthantheblackcoalplant(s)wouldbeabout6to7MtCO2per year. Thereareanumberofsecond-ordereffectstoconsiderhere. Mostimportantly,therecouldbeincreasesingenerationbyotherbrowncoalplants. However,initialanalysissuggeststhatsuch‘leakage’isnotlikelytobelarge,becausebrown coalplantsgenerallyoperateatfairlyhighutilizationrates.Indeed,ifweassumethe remainingthreebrowncoalplantsincreasetheirgenerationtothehighestannualaverage observedoverthepastdecade(83.5%forHazelwood,88.3%forLoyYangA,86.5forLoy YangBand88.6%forYallourn),thiswouldsoakupamaximumofabout5GWhorabouthalf ofthereducedoutputfromtheexitingplant.Emissionssavingswouldstillamountto3to 3.5MtCO2peryearunderthisextremescenario. Othersecond-ordereffectswouldtendtodecreasetheemissionsintensityofoverall electricitygenerationfurther.Firstly,inprinciplesomeofthedisplacedbrowncoal 15 generationcouldbemadeupforbygas-generatedpower,thoughthismaynotbethecase inpracticetoanysignificantextentinAustraliabecausegasisrelativelyexpensiveandin shortsupply(SimshauserandNelson2015).Inaddition,onecouldexpectsomerenewable energyinvestmenttobebroughtforward.Further,anyincreasesinelectricitypricescould resultinreductionsinenduse,althoughtheseeffectsarelikelytobesmallindeed. Table2belowillustratespotentialemissionssavingsfromtheclosureofeachofthefour largebrowncoalplants,assumingamoremoderate(andpendingdetailedmodeling perhapsmorerealistic)leakagerateof30%totheremainingbrowncoalplants. Table2:Scenariosforemissionssavingsfromplantclosure Additional blackcoalif Withdrawn allgenmade browncoal upbyblack coal Additional browncoalif remaining browncoal plantssoakup 30% RetireLoyYangB Generation(GWhsentout) Additionalblack coalifremaining 70%madeupby blackcoal -6,952 6,952 2,085 4,866 Emissionsfactor(tCO2/MWh) 1.24 0.92 1.36 0.92 Emissions(MtCO2) -8.61 6.40 2.83 4.48 Emissionssavings(MtCO2) RetireYallourn Generation(GWhsentout) 2,925 6,824 1.42 0.92 1.31 0.92 -13.84 7.65 3.84 7.65 Emissions(MtCO2) 2,946 6,873 1.52 0.92 1.28 0.92 -14.94 7.65 3.77 7.65 Emissionssavings(MtCO2) -7.29 -3.52 -14,630 14,630 4,389 10,241 1.21 0.92 1.41 0.92 -17.70 7.65 6.18 7.65 Emissionsfactor(tCO2/MWh) Emissions(MtCO2) 9,819 Emissionssavings(MtCO2) Generation(GWhsentout) -2.35 -9,819 Emissionsfactor(tCO2/MWh) RetireLoyYangA -6.19 Generation(GWhsentout) 9,749 Emissionssavings(MtCO2) RetireHazelwood -1.30 -9,749 Emissionsfactor(tCO2/MWh) Emissions(MtCO2) -2.21 -10.05 -3.87 16 Illustrativevaluationsandcosts Valuationofcarbondioxideemissionsreductions Theaboveindicativecalculationssuggestemissionssavingsfortheclosureofoneofthe moreemissionsintensiveofVictoria’sbrowncoalfiredpowerplantsofaround2to7million tonnesofcarbondioxideperyear.Acomprehensive,modellingbasedanalysismaygive differentresults. Differentvaluationscanbeappliedtothisestimate.Abenchmarkforthegovernment’s willingnesstopayforemissionsreductionsarethepricespaidbygovernmentforcontracts foremissionsreductionsunderAustralia’sfirstauctionoftheEmissionsReductionsFund (ERF).TheaveragepriceunderthefirsttwoERFauctionswas$13.12/tCO2-equivalent(Clean EnergyRegulator2015).Thepricelevelmaychangeinsubsequentrounds.Further,there arealsothecostsofraisingpublicrevenuethroughthetaxsystemtoconsider.Estimatesfor themarginalexcessburdenoftaxationvary(seeCaoet.al.2015),butasanillustrationwe use30%.Thisimpliesaneffectiveaveragecosttotaxpayersofaround$17/tCO2-equivalent undertheERF.3 Analternativebasisforvaluationisthesocialcostofcarbon,whichisameasureofthe discountedvalueofexpectedfutureglobaldamagesfromadditionalGHGemissions–the globalvalueofreducingemissions.ThereisalargeliteratureonestimatesoftheSCC, showingaverywiderangeofestimates(Tol2011).Asetofestimatesexiststhathasbeen widelyusedinpublicpolicyanalysis,developedbytheUSInteragencyGroup(2010,2013)as abasisforregulatoryanalysisintheUnitedStates(seealsoGreenstoneetal.,2011and Johnsonetal.,2012).TheseestimateshavetheSCCatA$88,A$57andA$17respectivelyfor discountratesof2.5%pa,3%paand5%pa,andatA$166forascenarioofhighclimate changedamages.4Onthebasisoftheliteratureondiscountingforclimatechangeanalysis (Edenhoferetal.,2014),a5%discountrateisconsideredoutsideoftheapplicablerange. Thus,anillustrativerangefortheevaluationofthecarbonbenefitsfromplantclosureis$17 to$88pertonneofcarbondioxide.Benefitsfromreductionsinnon-CO2airpollutionwould alsolikelyaccrue(ATSE,2009;WardandPower,2015)butaresetasideinthisexample. Theillustrativerangeofpotentialemissionssavingsfromtheclosureofthetwoolderbrown coalplantsprovidedaboveis2to7MtCO2peryear.Assumingtheannualsavingsare maintainedforbetween5to15years(onthebasisthatthisistheperioduntilclosureofthe browncoalfiredplantwouldhappenanyway),thisyieldsarangeof10to105MtCO2in total.Evaluatedat$17/tCO2and$88/tCO2,thisyieldsarangeof$170millionto$9billionin totalmonetizedbenefitsforcarbondioxidesavings. Itappearslikelythatthattheemissionsbenefitsfrombrowncoalplantclosureasevaluated herearelarger,andpossiblymuchlarger,thanthelikelyadditionalpowersystemcostsand bidsunderamarketmechanismforregulatedclosure. 3 Onthe(quitepossiblyoptimistic)assumptionthatcontractedemissionsreductionsare‘additional’- thatistheywouldnothavehappenedotherwise-andignoringlikelyfutureincreasesinaverageERF contractprices. 4 Forassessmentofemissionsin2015,usinganexchangerateofA$0.74/US$,withinflation adjustmentfromthe2014baseontheestimates. 17 Closurecosts Wedonothaveinformationavailableaboutthepaymentsthatwouldberequiredto facilitateclosureoftherelevantpowerplants,inparticularofthemagnitudeofforegone profitsasaresultofearlyclosureofbrowncoalfiredpowerplants. Siteremediationcostsarethoughttobeintheorderof$100to$300million(Nelsonetal., 2015,p26).Thecostofastructuralassistancepackageisunknown,howeverasan indication,theHazelwoodstationemploys540workersdirectlyandaround300contractors, andmoreduringperiodsofmaintenance.Anillustrativepackageof$150millionwouldthen provideover$100,000perworker/contractor,andanother$50milliontothecommunity. Itisimportanttonotethatremediationandretrenchmentscostswouldhavetobeborneby theplantownersinanycaseatapointinthefuturewhenclosurewillinevitablyoccur. Additionalcostsfromaregulatedclosureschemewouldconsistonlyofanyadditional impositionsonthebusinessoverandabovetheirexistingcommitments,forexample paymentsforcommunityassistance,workerre-trainingoverandaboveretrenchment packages,orsiterehabilitationtoahigherstandardthanwouldotherwiseoccur. Costratios Toillustratethefinancialeffectsontheindustry,weassumeaone-offpaymentforclosure ofbetween$400millionto$1billion,sharedbetweentheremainingpowergenerators. TotalCO2emissionsfromelectricitygenerationduring2014were153Mt(NEMSight2015). Underaschemewhereclosurepaymentsarecoveredbygeneratorsinproportiontotheir CO2emissions,a$400millionor$1billiontotalpaymentimpliesaCO2levyof$3/tCO2to $7/tCO2ifthefullpaymentwerecoveredoverthespaceofoneyear.Thisisonlyamarginal impactonrelativecostsbasedonemissionsintensity,howeveratcertaintimesitwould changethemeritorderintheNEM,andconsequentlyitwouldleadtomarginalreadjustmentsinthefuelandplantmix,andloweroverallCO2emissions. Basedonthe2014generationmixintheNEMandCO2emissionsbytechnology,54%ofthe totalpaymentwouldbecoveredbyblackcoalplants,38%bybrowncoalplants,and8%by gasfiredplants.Theseshareswouldbeadjustedforthereductioninbrowncoalfired generation. TotalelectricitysentoutintheNEMduring2014was182Twh(NEMSight2015).Sothe illustrativepaymentswouldamounttoaround$2/Mwhto$5/Mwh.Thiscomparesto typicalNEMwholesalepricesoverlongertermperiodsofaround$40/Mwh.Assumingthat theclosurepaymentwouldbefullyreflectedinhigherwholesalepricesasanupperbound, thiswouldamounttoanincreaseof5%to14%inwholesalepricesoverthecourseofone year(andpricesdroppingagainafterwards).Thecorrespondingincreaseinretailprices wouldonlybeintheorderof1%to2%,overoneyear(assumingretailpricesof25c/kwh andfullcostpass-throughfromwholesaletoretailprices). 4. Conclusions Australiahasovercapacityinelectricitygenerationthatincludesanumberofhighly emissionsintensivebrowncoalfiredplants,arenewableenergytargetmechanismwhich bringsnewcapacityintothegrid,butnocarbonpricesignal.Inthissituation,itispossible thatblackcoalgeneratorswillbecloseddownaheadofmorepollutingbrowncoal generators,becauserunningcostsofbrowncoalplantsarelower. Thiswouldmeanmissingoutonopportunitiestoreduceemissions,andrealisingother societalbenefitsfromclosingoldbrowncoalfiredplants.Thelikelyemissionsbenefitsfrom 18 browncoalplantclosurecouldbeofmuchhighersocialvaluethantheadditionalpower systemcosts.Ourempiricalillustrationssuggestthatsystem-wideemissionsreductionsfrom closureofoneofAustralia’sfourlargestbrowncoalfiredpowerstationscouldbebetween 1.3and10MtCO2peryear,dependingonassumptionsaboutwhichplantisclosedand whichgeneratorswouldmakeupfortheiroutput. Valuingthesereductionseitheratthepricepaidforcontractedemissionsreductionsunder Australia’sEmissionsReductionsfundoratthesocialcostofcarbonsuggestthatthevalue tosocietymaywellexceedthepaymentsrequiredforclosure,evenbeforeconsideringnoncarbonbenefits. GiventhatAustraliahasatargettoreducenationalemissionsandgovernmentisnot planningtore-introduceacomprehensivecarbonprice,thiswouldsuggestthatspecific governmentinterventiontoclosebrowncoalcapacityiswarrantedinprinciple.However, thepolicymechanismsusuallysuggestedtoinducesuchplantexithavesubstantial drawbacks.Directregulationsuffersfromgovernmentnothavingsufficientinformation aboutbusinesscoststructures,andthereforeitwouldbedifficultfortheregulatorto identifywhichplantwouldbethemostcost-effectivetocloseandhowmuchtoofferin compensationifsuchcompensationwasoffered.Moreover,aschemeofgovernment paymentsforclosuresuffersfromlackofpoliticalacceptability. Inthispaperwehaveproposedamarketmechanismforregulatedpowerplantclosurethat wouldovercomethesedifficulties.Itcouldachieveaclosureoftheplant(s)thatwould reduceemissionsmostcosteffectively,andmeetanumberofconstraints. Theprincipleoftheproposedmechanismisthatgovernmentmandatestheclosureofsome amountofcapacitybywayofregulation,butleavesittoacompetitivebiddingprocessto determinewhichplant(s)willcloseandwhatthemagnitudeofthepaymenttotheclosing plantis.Theplantsremaininginoperationthenmakefinancialtransferstotheplantthat exits,inlinewiththeiremissions. Suchamechanismcanprovideemissionssavingsfromplantclosureatleastcost,avoid budgetarycostsbysourcingthepaymentsforclosurefromtheplantsremainingin production,andprovidesomeincentivestoadjustthepowermixtoreduceemissions.In addition,paymentbyremaininggeneratorsonthebasisofemissionshelpsovercome adverseincentiveeffectsthatmightotherwisebepresentforplantstostayinoperationin anticipationofpaymentforclosure. Whileanyadditionalcostscomparedtoascenariowhereblackcoalplantsexitwould ultimatelybebornebyelectricityconsumers,theimpostwouldbesmallandtemporary. Withthispaperwehopetore-kindleadiscussioninAustraliaaboutgovernmentfacilitating efficientexitofhighlypollutingpowerstations,anoutcomethatmayotherwisenotbe achievedintheabsenceofcarbonpricing.Theproposedmechanismmayalsobeapplicable inothercountries,inparticulardevelopedcountrieswithover-capacityinoldercoalfired powerplants. Manyaspectsofpowerstationexitandthespecificmechanismproposedwillrequire furtheranalysis.Amongthemarestrategicbehaviourinamarketwithaverysmallnumber ofcandidateplantsandcross-ownershipofplantsandeffectsonthebidsthatwouldbe madeunderaclosurescheme.Alsoneededwillbedetailedmodellingoflikelyemissions savingsfrombrowncoalemissionsplants,takingintoaccountmeritorderandplant availabilityatatemporallyandspatiallydisaggregatedlevel,thatistakingintoaccountload curvesandinterconnectorcapacitiesbetweenStategrids.Modellingoftheeffectsofbrown coalplantclosureonspotmarketprices,especiallywhetherandtowhatextenttherewould bepriceupliftandassociatedrevenueinwholesaleelectricitymarketswillalsoberequired. 19 References AGL(2015).LoyYangA.https://www.agl.com.au/about-agl/how-we-sourceenergy/thermal-energy/agl-loy-yang,retrieved7Nov2015. AEMC(2015).ADVICETOTHECOAGENERGYCOUNCIL-Barrierstoefficientexitdecisionsby generators.June,2015. AEMO(2015).Reportonsecurityandreliabilityinthenationalelectricitymarketinthe contextofgenerationexits.May,2015. AlintaEnergy(2015).FlindersOperationsUpdate.https://alintaenergy.com.au/aboutus/news/flinders-operations-update,accessed9Nov2015. ATSE(2009).AustralianAcademyofTechnologicalSciences2009,TheHiddenCostsof Electricity:ExternalitiesofPowerGenerationinAustralia. Byrnes,L.,Brown,C.,Foster,J.,andWagner,L.D.(2013).Australianrenewableenergy policy:Barriersandchallenges.RenewableEnergy,60,711-721. Cao,L.,Hosking,A.,Kouparitsas,M.,Mullaly,D.,Rimmer,X.,Shi,Q.,Stark,W.,andWendeS. (2015).Understandingtheeconomy-wideefficiencyandincidenceofmajorAustralian taxes.Treasuryworkingpaper2015-01,April. CleanenergyRegulator(2015).Averagepriceof$12.25securesover45milliontonnesof abatementatsecondauction. http://www.cleanenergyregulator.gov.au/About/Pages/News%20and%20updates/NewsIte m.aspx?ListId=19b4efbb-6f5d-4637-94c4-121c1f96fcfe&ItemId=188,accessedNovember18, 2015 COAG(2014).CouncilofAustralianGovernmentsMeetingCommunique,Adelaide,11 December2014. CreativeAnalytics(2015).NEMSight,availablefromhttp://analytics.com.au/energyanalysis/nemsight-trading-tool/ Denis,A.,Jotzo,F.,andFerraro,S.(2014).Pathwaystodeepdecarbonisationin2050:how Australiacanprosperinalowcarbonworld,ClimateWorksAustraliaandANU. DeutscheWelle(2015),TheendoflignitecoalforpowerinGermany.Accessed17 November2015. EdenhoferO.,Pichs-Madruga,R.,Sokona,Y.(2014).TechnicalSummary,in:ClimateChange 2014:MitigationofClimateChange.ContributionofWorkingGroupIIItotheFifth AssessmentReportoftheIntergovernmentalPanelonClimateChange[Edenhofer,O.etal. (eds.)].CambridgeUniversityPress. Elliston,B.,Macgill,I.,andDiesendorfD.,(2013).Leastcost100%renewableelectricity scenariosintheAustralianNationalElectricityMarket.EnergyPolicy59:270-282. EnergyAustralia(2015).Yallourn.http://www.energyaustralia.com.au/about-us/what-wedo/generation-assets/yallourn-power-station,retrieved7Nov2015 GDFSuez(2015a).Hazelwood.http://www.gdfsuezau.com/about-us/asset/Hazelwood, retrieved7Nov2015. GDFSuez(2015b).LoyYangB.http://www.gdfsuezau.com/about-us/asset/Loy-Yang-BPower-Station,retrieved7Nov2015. 20 Greenstone,M.,Kopits,E.,&Wolverton,A.(2011).Estimatingthesocialcostofcarbonfor useinusfederalrulemakings:Asummaryandinterpretation(No.w16913).NationalBureau ofEconomicResearch. Helm,D.,&Pearce,D.(1990).Assessment:economicpolicytowardsthe environment.OxfordReviewofEconomicPolicy,1-16. IEA(2011).Climate&ElectricityAnnualdataandanalyses.InternationalEnergyAgency, Paris. InteragencyWorkingGrouponSocialCostofCarbon,UnitedStatesGovernment(2010). TechnicalSupportDocument:- SocialCostofCarbonforRegulatoryImpactAnalysis-Under ExecutiveOrder12866’,2010. Interagency Working Group on Social Cost of Carbon, United States Government (2013). Technical Support Document - Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis - Under Executive Order 12866’, 2013. Johnson,LaurieT.,andChrisHope(2012),ThesocialcostofcarboninUSregulatoryimpact analyses:anintroductionandcritique.JournalofEnvironmentalStudiesandSciences2(3): 205-221. Jotzo,F.,Jordan,T.andFabian,N.(2012),PolicyUncertaintyaboutAustralia’sCarbonPrice: ExpertSurveyResultsandImplicationsforInvestment.AustralianEconomicReview45(4): 395–409. Nelson,T.,Reid,C.,&McNeill,J.(2015).Energy-onlymarketsandrenewableenergytargets: Complementarypolicyorpolicycollision?EconomicAnalysisandPolicy,46,25-42. Parry,I.W.,&Williams,R.C.(1999).Asecond-bestevaluationofeightpolicyinstrumentsto reducecarbonemissions.ResourceandEnergyEconomics,21(3),347-373. Riesz,J.,Noone,B.,&MacGill,I.(2013),PaymentsforClosure-ShouldDirectAction includepaymentsforclosureofhighemissioncoal-firedpowerplants?CentreforEnergy andEnvironmentalMarketsWorkingPaper2013,UniversityofNSW,October2013 Simshauser,P.,&Nelson,T.(2015).Australia'scoalseamgasboomandtheLNGentry result.AustralianJournalofAgriculturalandResourceEconomics59(4):602-623. Tol,R.S.(2011).Thesocialcostofcarbon.Annu.Rev.Resour.Econ.,3(1),419-443. Traber,T.andKemfert,C.(2011).Gonewiththewind?—Electricitymarketpricesand incentivestoinvestinthermalpowerplantsunderincreasingwindenergysupply.Energy Economics,33(2):249-256. WardandPower2015,CleaningupVictoria’sPowerSector:thefullsocialcostofHazelwood powerstation.
© Copyright 2026 Paperzz