Standard Model Theory XLIV International Meeting on Fundamental Physics Universidad Autonoma, MADRID 4 – 8 April, 2016 W. H OLLIK M AX -P LANCK -I NSTITUT F ÜR P HYSIK , M ÜNCHEN Outline The Standard Model in the pre-Higgs era The Standard Model in the Higgs era The status of Standard Model Future prospects the rise of the EW Standard Model the symmetry group SU(2) × U(1) – discovery of neutral currents 1973 the W and Z bosons – discovery 1983 at SPS (CERN) the coupling structure from local gauge invariance – precise measurements at LEP/SLC 1989 - 2000 the Higgs mechanism and Yukawa interactions – top discovery at Tevatron 1995 – Higgs discovery at LHC 2012 precision physics: major role in establishing the SM restricting BSM physics interactions from gauge-symmetric Lagrangian fermion–vectorbosons vectorboson self interactions (fields and momenta incoming) f Wµ+ Aµ f¯ Feynman rules: Vρ Wν− f Wµ f¯′ Wµ+ Vρ f Wν− Vσ′ Zµ f¯ coupling constants: gem = e, gweak = e/ sin θw group entries: isospin I3f , charge Qf interactions from symmetry-breaking Lagrangian WWH and ZZH couplings µ V W H H m2W µν 2i g v W Vν ZV µ H H m2Z µν 2i g v ZVν WWHH and ZZHH couplings Vµ Vµ H H W m2W µν 2i 2 g v WVν H H H H Z m2Z µν 2i 2 g v H H ZVν Fermion-Higgs coupling f H mf −i v couplings proportional to masses f Cubic and Quartic self-couplings HH H HH H −3i m2H v HH H H HH H H m2H −3i 2 v Higgs boson probably found, all other particles confirmed consistent quantum field theory in accordance with unitarity renormalizable ⇒ predictions at higher orders formal parameters: physical parameters: g2 , g1 , v, λ, gf , VCKM α, MW , MZ , MH , mf , VCKM observables and experiments • Muon decay: µ− → νµ e− ν̄e determination of the Fermi constant µ− παMZ2 W • • + ... Gµ = √ 2 (M 2 − M 2 ) 2MW W Z e+ e− → Z → f f¯ Z production (LEP1/SLC): e+ various precision measurements at the Z resonance: MZ , ΓZ , σhad , AFB , ALR , etc. γ, Z e− ⇒ good knowledge of the Zf f¯ sector W-pair production (LEP2/ILC): W e+ γ, Z e− W W e+ νe e− W e+ e− → WW → 4f (+γ) – measurement of MW – γWW/ZWW couplings – quartic couplings: γγWW, γZWW experiments at hadron colliders • p – measurement of MW W p, p̄ • pp, pp̄ → W → lνl (+γ) W production (Tevatron/LHC): – bounds on γWW coupling top-quark production (Tevatron/LHC): pp, pp̄ → tt̄ → 6f W p t t̄ p, p̄ b b̄ – measurement of mt W • Higgs production (LHC): pp → H → γγ, ZZ, . . . H t t t H W, Z W, Z input quantities GF = 1.1663787(6) · 10−5 GeV−2 MZ = 91.1875 ± 0.0021 GeV MW = 80.385 ± 0.015 GeV mt = 173.2 ± 0.9 GeV MH = 125.09 ± 0.24 GeV αs (MZ ) = 0.1185 ± 0.0006 precise experiments . . . . . . need precise calculations Test of theory at quantum level: Sensitivity to looptheorretions role of theory: exploiting quantum structure X sensitivity to heavy internal particles (X) + Standard Model: X = Higgs, top Very high auray of measurements and theoretial preditions needed electroweak precision observables Whih model ts better? Does the predition µ lifetime: GF of a model ontradit the experimental data? 2 Z observables: MZ , ΓZ , sin θeff , . . . S. Heinemeyer, High Energy Physis Seminar, 02/20/02 LEP 2, Tevatron, LHC: low energy: (g − 2)µ MW , m t + MH 4 Constraints on the Standard Model Higgs from eletroweak preision tests MW – MforZ Mcorrelation Theoretial predition W in the SM: Denition of Fermi onstant GF via muon lifetime: G2F m5 3 0 ! 2 me m2 1 + 35 1 m2 A 2 MW (1 + q) 192 q: QED orretions in Fermi Model, inluded in denition 1 = F [R. Behrends, R. Finkelstein, A. Sirlin µ− − ℄ [T. van Ritbergen, R. Stuart W'99 νµ '56 ℄ e− νe [higher orders] Comparison with SM predition for+ muon deay: ⋆ ⋆ GF πα √ = 2 2 2 MW 1 − MW /MZ 2 ⇒ ⇒ prediction ) ! 2 MWother parameters 2 W from of M p MW r 2 MZ GF each amplitude 1 = 2 (1 + ) ; ∼ GF requires these higher-order terms m loop orretions Constraints on the Standard Model Higgs from eletroweak preision tests MW – MZ correlation Theoretial predition for MW in the SM: Denition of Fermi onstant GF via muon lifetime: 1 = G2F m5 3 F 0 ! 2 me m2 1 + 35 1 m2 A 2 MW 192 q: QED orretions in Fermi Model, inluded in denition [R. Behrends, R. Finkelstein, − [T. van Ritbergen,µR. Stuart (1 + q) νµ A. Sirlin '56 ℄ ℄ '99 W e− − νe Comparison with SM predition for muon deay: νµ µ ) W e 2 MW νe µ 1 2 ! MW e MZ2νe νµ W νµ p = 2GF (1 + r) ; W µ W µ e νe νµ m e νe loop orretions ln mE O(1) quantum (1%) = 100GeV [0 2%orretions, 6%℄ Oof(1)Ofor ::: vector-boson mass correlation GF √ 2 = 2 MW πα 2 2 1 − MW /MZ : determines W mass MW = MW (α, GF , MZ , mt , MH ) complete at 2-loop order α2 and ααs ::: 1-loop entries E ontain all details of the theory top quark · (1 + ∆r) ∆r : quantum correction ∆r = ∆r(MZ , MW , mt , MH ) 2 e W t b H W e Higgs boson W W W e W e e gauge-boson self-ouplings W Z; W e e ) allow for indiret experimental tests of not diretly aessible quantities Ansgar Denner 28 24. J dominant contributions to ∆r ∆r = ∆α − c2w ∆ρ s2w + ··· Large universal terms: ∆α = Πγferm (MZ2 ) − Πγferm (0) = 0.05907 ± 0.0001 ∆ρ = ΣZ (0) 2 MZ − ΣW (0) 2 MW = GF m2t 3 8π2 √2 = 0.0094 beyond 2-loop order: ∆ρ(3) + ∆ρ(4) [one-loop] → 1 1−∆α ∼ αt αs2 αt , αs αt2 , αt3 , αs3 αt ∼ reducible higher order terms from ∆α and ∆ρ via 1 + ∆r ∼ m2t v2 c2 1+ w s2 w ∆ρ +··· photon vauum polarization − γ Πγferm (MZ2 ) − γ Πγferm (0) ≡ ∆α 1 α ≃ → α(MZ ) = 1 − ∆α 129 ∆α = ∆αlept + ∆αhad , ∆αlept = 0.031498 (4 − loop) ∆αhad = 0.02757 ± 0.00010 = 0.027626 ± 0.000103 = 0.027504 ± 0.000118 Steinhauser 1998; Sturm 2013 Davier et al. 2010 Hagiwara et al. 2011 Jegerlehner 2015 significant parametric uncertainty ∆αhad α 2 = − MZ Re 3π Z ∞ 4m2π Rhad (s′ ) ds ′ ′ s (s − MZ2 − iǫ) ′ Rhad = σ(e+ e− → γ ∗ → hadrons) σ(e+ e− → γ ∗ → µ+ µ− ) Jegerlehner 2015 EW 2-loop calculations for ∆r Freitas, Hollik, Walter, Weiglein Awramik, Czakon Onishchenko, Veretin Degrassi, Gambino, Giardino universal terms at 3- and 4-loops (EW and QCD) van der Bij, Chetyrkin, Faisst, Jikia, Seidensticker Faisst, Kühn Seidensticker, Veretin Boughezal, Tausk, van der Bij Schröder, Steinhauser Chetyrkin, Faisst, Kühn Boughezal, Czakon Chetyrkin, Faisst, Kühn, Maierhofer, Sturm 80.45 MW=80.385 ± 0.015 GeV MW (GeV) 80.40 80.35 Mt=173.2 ± 0.9 GeV 80.30 80.25 100 150 200 250 MH (GeV) variation of ∆r by 0.001 present exp. error: δ ∆α = 10−4 : ⇒ 300 350 400 δMW = 18 MeV ∆MW = 15 MeV / theo: 4 MeV ∆MW = 1.8 MeV cross section [nb] Z resonance 30 20 2ν LEP: ALEPH DELPHI L3 OPAL 3ν 4ν e + f data Z 10 0 86 88 90 92 94 cms energy [GeV] - e f • effective Z boson couplings with higher-order ∆gV,A gVf → gVf + ∆gVf , gAf → gAf + ∆gAf • effective ew mixing angle (for f = e): e 2 2 g M M 1 1 − Re Ve = 1 − W2 + W2 ∆ρ + · · · sin2 θeff = 4 gA MZ MZ two classes of observables; line-shape observables: MZ , ΓZ , partial widths, σpeak , . . . Rℓ = Γhad Γlept , Rb = EW 2-loop fermionic corrections Γb Γhad [Freitas; Freitas, Y.-C. Huang] hadronic width: RQCD Γhad = ΓEW had · RQCD α 3 α 4 α 2 αs s s s =1+ + A3 + A4 + A2 π π π π [Baikov, Chetyrkin, Kühn, Rittinger] two classes of observables; asymmetries: AF B , ALR , . . . ⇒ forward-backward asymmetry Af = f 2 gVf /gA f 2 1 + (gVf /gA ) AF B = ⇒ σF −σB σF +σB = 3 4 Ae Af f sin2 θeff polarized cross section for e− L,R : ⇒ left-right asymmetry ALR = σL −σR σL +σR = Ae asymmetries determine sin2 θeff ⇒ sin2 θeff EW 2-loop calculations for sin2 θeff Awramik, Czakon, Freitas, Weiglein Awramik, Czakon, Freitas Hollik, Meier, Uccirati universal terms at 3- and 4-loops (EW and QCD) van der Bij, Chetyrkin, Faisst, Jikia, Seidensticker Faisst, Kühn Seidensticker, Veretin Boughezal, Tausk, van der Bij Schröder, Steinhauser Chetyrkin, Faisst, Kühn Boughezal, Czakon Chetyrkin, Faisst, Kühn, Maierhofer, Sturm 0.2325 sin2 Θeff 0.232 0.2315 exp 0.231 1loop +QCD+lead.3loop +2loop 0.2305 200 theory uncertainty: δ ∆α = 10−4 : 400 600 MH @GeVD δ sin2 θeff = 5 · 10−5 δ sin2 θeff = 3.5 · 10−5 800 1000 some observables with not-so-good agreement in general, SM is in overall agreement with data yet a few quantities stand a bit apart (∼ 3σ ) the forward-backward asymmetry for b quarks, b̄ at the Z peak AbFB the anomalous magnetic moment of the muon the forward-backward asymmetry for top quarks at the Tevatron, pp̄ → tt̄ new NNLO QCD calculation: Czakon, Fiedler, Mitov 2015 data now compatible with SM prediction (QCD + EW) forward-backward asymmetry for b quarks is around since the days of LEP/SLC indicates presence of some extra right-handed contributions to the Zbb coupling no convincing explanation in current new physics models Afb 0,l 0.23099 ± 0.00053 Al(Pτ) 0.23159 ± 0.00041 Al(SLD) 0.23098 ± 0.00026 Afb 0,b 0.23221 ± 0.00029 0,c Afb had Qfb 0.23220 ± 0.00081 0.2324 ± 0.0012 0.23153 ± 0.00016 Average MH [GeV] 10 10 χ /d.o.f.: 11.8 / 5 2 3 2 0.23 ∆α(5) had= 0.02758 ± 0.00035 mt= 172.7 ± 2.9 GeV 0.232 lept sin2θeff 0.234 AbFB determined by sin2 θe and sin2 θb : AbFB = Ae = 3 4 1−4 sin2 θe , 1+(1−4 sin2 θe )2 Ae Ab Ab = 1−4/3 sin2 θb 1+(1−4/3 sin2 θb )2 recent electroweak 2-loop calculation – too small Awramik, Czakon, Freitas, Kniehl 08 -4 1×10 -2 O(mt ) -6 8×10 O(mt ) -8 O(mt ) -10 O(mt ) -5 6×10 2 sin θeff 2-loop,ferm -4 O(mt ) -5 -5 4×10 -5 2×10 0 200 400 600 MH[GeV] 800 1000 anomalous magnetic moment of the muon Higher order corrections are classified into 3 classes: W W Z (a) pure QED (b1 ) electroweak (b2 ) (c) hadronic aSM aQED aEW aHad The QED part is known to 5 loops Kinoshita et al. The EW part is known to 2 loops Czarnecki, Krause, Marciano; Gnendiger, Stöckinger, Stöckinger-Kim The hadronic part is known with limited accuracy, hadronic vacuum polarization from data at low energies many authors, most recent: Jegerlehner 2015 Anomalous g-factor of the muon incl. ISR DHMZ10 (e+ e− ) 180.2 ± 4.9 DHMZ10 (e+ e− +τ ) 189.4 ± 5.4 JS11/FJ15 (e+ e− +τ ) 176.4 ± 5.2 HLMNT11 (e+ e− ) 182.8 ± 4.9 DHMZ10/JS11 (e+ e− +τ ) 181.1 ± 4.6 BDDJ15# (e+ e− +τ ) 170.4 ± 5.1 BDDJ15∗ (e+ e− +τ ) 175.0 ± 5.0 excl. ISR DHea09 (e+ e− ) 178.8 ± 5.8 BDDJ12∗ (e+ e− +τ ) 175.4 ± 5.3 experiment BNL-E821 (world average) 208.9 ± 6.3 150 SM prediction: [3.6 σ] [2.4 σ] [3.4 → 4.0 σ] [3.3 σ] [3.6 σ] [4.8 σ] [4.2 σ] [3.5 σ] [4.1 σ] ∗ HLS global fits # 200 HLS best fit 250 aµ ×1010 -11659000 Jegerlehner 2015 4σ below exp. value theory uncertainty from hadronic vacuum polarization Global fit to the Higgs boson mass before the discovery in 2012 6 mLimit = 152 GeV March 2012 Theory uncertainty ∆α(5) had = 5 blueband: Theory uncertainty 0.02750±0.00033 0.02749±0.00010 2 4 incl. low Q data MH < 152 GeV (95%C.L.) 2 MH = 94+29 −24 GeV ∆χ 2 3 1 0 LEP excluded 40 LHC excluded 100 MH [GeV] 200 The Higgs era 2015: first combined ATLAS/CMS Higgs-boson mass determination ATLAS and CMS LHC Run 1 Total Syst. Stat. Total Stat. Syst. ATLAS H → γ γ 126.02 ± 0.51 ( ± 0.43 ± 0.27) GeV CMS H → γ γ 124.70 ± 0.34 ( ± 0.31 ± 0.15) GeV ATLAS H → ZZ → 4l 124.51 ± 0.52 ( ± 0.52 ± 0.04) GeV CMS H → ZZ → 4l 125.59 ± 0.45 ( ± 0.42 ± 0.17) GeV ATLAS +CMS γ γ 125.07 ± 0.29 ( ± 0.25 ± 0.14) GeV ATLAS +CMS 4l 125.15 ± 0.40 ( ± 0.37 ± 0.15) GeV ATLAS +CMS γ γ +4l 125.09 ± 0.24 ( ± 0.21 ± 0.11) GeV 123 124 125 126 127 128 129 mH [GeV] A Standard Model Higgs boson at the LHC? Moriond 2016 µ = 1.09+0.11 −0.10 µ = σ(pp → H) · BR(H → X)/[SMtheory ] Higgs production at the LHC Higgs production modes ggF VBF VBF VH ttH VH • ttH Dominant Higgs production modes expected from the SM at m =125 GeV: Handbook of Higgs Cross Sections, Vol. 1, 2, 3 CERN-2011-002, CERN-2012-002, CERN-2013-004 NLO exact Dawson (1991); Djouadi, Spira, Zerwas (1991) Graudenz, Spira, Zerwas (1993) Heavy quarks in the loops make the computation difficult. NNLO computed using effective vertex Harlander, Kilgore (2002) Anastasiou, Melnikov (2002) Ravindran, Smith, van Neerven (2003) Double Virtual: ⊗ ⊗ + 148 terms; ⊗ ⊗ + 635 terms; ⊗ + 594 terms. Real Virtual: Double Real: ⊗ In addition: q + g → h + X(q, q, g) qi + qj (q j ) → h + X(q, q, g) NNNLO for gg → H Anastasiou et al. 2015 Consistent with previous NNLL+NNLO !"#$% &' ()*' &+ *", *% !" #!" )% pure EFT symm scale variation LO: at N3LO ~2%14.8 NLO: 16.6 NNLO: 8.8 N3LO: 1.8 ##!" (% !"# !!"" #$!" '% % %&% %&' %&( %&) !!! " # %&* +&% +&' "# # $ ‣ + more accurate pdfs (PDF4LHC prescription) H → V V → 4f decays: needs also background pocesses + h.o. fa V H fa f¯b f¯b V V H fc V fa fc V f¯b fc fb V H f¯b V fc fa fa f¯b f¯b H fc H V fc fa f¯d f¯d V f¯b f¯d fa f¯d fa fc H fc f¯b V f¯d V fd H fc fa V f¯d H V fa f¯b H fc f¯d V f¯b V H fc V fa f¯b V H f¯d V fa f¯d fa H f¯b fc fc f¯d f¯d f¯d Bredenstein, Denner, Dittmaier, Weber 2007 PROPHECY4f H → γγ decays: γ H γ H γ (a) (b) γ H (c) γ γ γ H γ H γ (d) (e) γ H q t (f) γ H q t (g) γ γ γ non-singlet and singlet terms; electroweak corrections (Passarino,. . .) ΓH→γγ = (9.398 − 0.148 LO×NLO-EW + 0.168 LO×NLO-QCD + 0.00793) keV α2s α2s term dominated by singlet part of prediction, prediction good to 1 permille! Maierhöfer, Marquard 2012 precision physics in the Higgs era Higgs boson mass MH is now an additional precise input parameter partial decay widths influenced by quantum effects – accordingly, affected also by non-standard physics – new set of sensitive precision observables MH itself is a prediction/ precision observable in specific classes of models further empirical information available on top of the “classical” set of precision observables production of tt̄H measurement of the Higgs–top Yukawa coupling Idea under discussion: highly boosted “fat jets” b̄ b b̄ t t H H t̄ W− p l ν̄l p W+ t t q̄ ′ t̄ q b Butterworth et al. ʼ08; ATL-PHYS-PUB-2009-088 fat jet containing pair from high- Higgs (successful in WH/ZH revival!) requires accurate background calculations, e.g. for pp → tt̄ bb̄ µR = µF = ξmt .... LO — NLO Bredenstein et al. Bevilacqua et al. Main results: measurement of Higgs self-coupling HH production channels gg fusion → H g H g g H VV fusion q q′ V q V∗ 10 4 10 3 10 2 Q ∗ HH production at pp colliders at NLO in QCD MH=125 GeV, MSTW2008 NLO pdf (68%cl) H → ′ H H σNLO[fb] Q H H (EF pp→H ) roved p-imp T loo 101 F) B Hjj (V pp→H H H tt pp→ 100 10 H pp→WH MadGraph5_aMC@NLO g H pp→ZH -1 tj pp→ q HH 10-2 Associated production with top 10-3 8 1314 25 33 50 75 100 √s[TeV] t g q̄ H H g t̄ g q Higgs-strahlung → q̄ ′ q V∗ H H V √ s [TeV] NLO σgg→HH [fb] NLO σqq ′ →HHqq ′ [fb] σqNNLO q̄ ′ →W HH [fb] σqNNLO q̄→ZHH [fb] σqLO q̄/gg→tt̄HH [fb] 0.21 8 8.16 0.49 0.21 0.14 14 33.89 2.01 0.57 0.42 1.02 33 207.29 12.05 1.99 1.68 7.91 100 1417.83 79.55 8.00 8.27 77.82 Gluon-gluon fusion dominates Only some contribute with HHH production of VV + 2 jets measure V V → V V scattering sensitive to electroweak symmetry breaking – BSM? V H e.g. V′ background for Higgs production via vectorboson fusion with H → V V q W, Z H W, Z q Status of the Standard Model e Myon Tauon 511 keV 105.6 MeV 1777 MeV u c t Up-Quark 2 MeV Charm-Quark 1.5 GeV Top-Quark 173.1 GeV d s b Down-Quark 5 MeV Strange-Quark 150 MeV Bottom-Quark 4.5 GeV W Z g Photon W-Boson Z-Boson Gluon 0 80.40 GeV 91.1875 GeV 0 H Higgs-Boson 125 GeV Quarks Elektron 9 > > > > > > > > > = > > > > > > > > > ; Bosons e < 18 MeV Fermions Tau-Neutrino < 190 keV (force particles) Myon-Neutrino 9 > > > > > > > > > > > > > > > > > > > > > > > = > > > > > > > > > > > > > > > > > > > > > > > ; (matter particles) Elek.-Neutrino < 3 eV Leptons 9 > > > > > > > > > = > > > > > > > > > ; 9 > > > > > > > > > = > > > > > > > > > ; SM input completey determined precision observables ⇒ exp sin2 θeff 0.23152 ± 0.00005 ± 0.00005 0.23153 ± 0.00016 MW (GeV) 80.361 ± 0.006 ± 0.004 80.385 ± 0.015 MW [GeV] theo 80.5 mkin t Tevatron average ! 1 68% and 95% CL fit contours w/o MW and mt measurements 80.45 80.4 68% and 95% CL fit contours w/o MW , mt and MH measurements MW world average ! 1 80.35 80.3 140 0 =5 MH V Ge .7 25 =1 00 =3 MH MH 150 160 V Ge 0 60 V Ge G fitter SM = MH 170 180 190 Sep 12 80.25 200 mt [GeV] evolution of self-coupling λ with scale Q dλ 1 2 4 2 Q 12λ − 3 gt + 6 λ gt + · · · = 2 2 dQ 16π 2 vacuum stability: λ(Q) > 0 Hambye, Riesselmann 1997 up to scale Λ evolution of self-coupling λ with scale Q dλ 1 2 4 2 Q 12λ − 3 gt + 6 λ gt + · · · = 2 2 dQ 16π 2 vacuum stability: λ(Q) > 0 up to scale Λ 1018 1Σ bands in Mt = 173.1 ± 0.6 GeV Αs HMZ L = 0.1184 ± 0.0007 Mh = 125.66 ± 0.34 GeV Instability scale in GeV 1016 1014 1012 1010 108 115 120 125 130 135 Higgs mass Mh in GeV Hambye, Riesselmann 1997 Degrassi et al. 2012 180 ility 150 M ab -s t eta 100 Stability 50 0 0 50 100 150 Higgs mass Mh in GeV 200 Pole top mass Mt in GeV Instability Non-perturbativity Top mass Mt in GeV 200 107 1010 Instability Instability Meta-stability 175 1,2,3 Σ 170 10 1012 165 115 Stability 120 125 Higgs mass Mh in GeV [Degrassi et al. 2012] precise measurement of mt crucial input 130 135 Present uncertainties 20 Prospects for LHC 80.44 4σ Prospects for ILC/GigaZ (δ theo = Gauss) 3σ mt ± 1σ G fitter SM Prospects for LHC Prospects for ILC/GigaZ 80.4 80.38 10 68% and 95% CL fit contours w/o MW and mt measurements Present SM fit 80.42 Prospects for ILC/GigaZ (δ theo = Rfit) 15 80.46 Oct 13 G fitter SM Present SM fit MW [GeV] 5σ 25 Oct 13 ∆ χ2 the future of SM tests 80.36 Present measurement ILC precision LHC precision MW ± 1σ 80.34 5 2σ 80.32 0 1σ 60 80 100 120 140 160 180 200 80.3 160 165 170 175 180 MH [GeV] from: Working Group Report of the 2013 Community Summer Study (Snowmass) on the Energy Frontier Precision Study of Electroweak Interactions 185 mt [GeV] present and aimed experimental precision exp. error LEP/Tev/LHC LC/GigaZ FCee MZ [MeV] 2.1 2.1 0.1 MW [MeV] 10 3-5 1 sin2 θeff [10−5 ] 17 1.3 0.6 Rb [10−5 ] 66 15 5 mtop [GeV] 0.7 0.1 0.05 ∆α 1 · 10−4 5 · 10−5 < 5 · 10−5 αs 6 · 10−4 < 6 · 10−4 1 · 10−4 0.2330 experimental errors 68% CL / collider experiment: LEP/SLD/Tevatron 0.2325 LHC ILC/GigaZ AFB (LEP) mt = 170 .. 175 GeV sin 2 eff 0.2320 0.2315 SM:MH = 125.6 ± 0.7 GeV 0.2310 ALR (SLD) 0.2305 MSSM SM, MSSM 0.2300 80.2 80.3 Heinemeyer, Hollik, Weiglein, Zeune et al. ’13 80.4 MW [GeV] 80.5 80.6 80.60 experimental errors 68% CL / collider experiment: LEP2/Tevatron: today LHC ILC/GigaZ 80.50 Mh = 125.6 ± 3.1 GeV MW [GeV] MSSM 80.40 80.30 SM MH = 125.6 ± 0.7 GeV MSSM SM, MSSM Heinemeyer, Hollik, Stockinger, Weiglein, Zeune ’13 168 170 172 174 mt [GeV] 176 178 Conclusions and perspectives impressive confirmation by a huge data sample from low to high energies, no significant deviations quantum effects have been established at many σ perfect indirect and direct determination of the top quark now repeated for the Higgs boson scalar particle at 125 GeV: SM Higgs boson or first signal of BSM? next steps with upgraded LHC / improved precison – confirm the Higgs boson properties – check versus electroweak precision measurements – or find deviations, new structures
© Copyright 2026 Paperzz