Chapter 2
Combinatorial Analysis
主講人:虞台文
Content
Basic Procedure for Probability Calculation
Counting
–
Ordered Samples with Replacement
–
Ordered Samples without Replacement Permutations
–
Unordered Samples without Replacement Combinations
Binomial Coefficients
Some Useful Mathematic Expansions
Unordered Samples with Replacement
Derangement
Calculus
Chapter 2
Combinatorial Analysis
Basic Procedure for
Probability Calculation
Basic Procedure for Probability Calculation
1.
2.
3.
4.
Identify the sample space .
Assign probabilities to certain events in A,
e.g., sample point event P().
Identify the events of interest.
Compute the desired probabilities.
Chapter 2
Combinatorial Analysis
Counting
Goal of Counting
Counting the number of elements in a
particular set, e.g., a sample space, an
event, etc.
?
E
E ?
Cases
Ordered Samples w/ Replacement
Ordered Samples w/o Replacement
–
Unordered Samples w/o Replacement
–
Permutations
Combinations
Unordered Samples w/ Replacement
Chapter 2
Combinatorial Analysis
Ordered Samples
with Replacement
Ordered Samples
eat
ate
tea
elements in samples appearing
in different orders are
considered different.
Ordered Samples w/ Replacement
meet
teem
mete
1. Elements in samples appearing
in different orders are
considered different.
2. In each sample, elements are
allowed repeatedly selected.
Ordered Samples w/ Replacement
n
distinct
objects
k
Drawing k objects, their order is noted,
among n distinct objects with replacement.
The number of possible outcomes is
n
k
Example 1
How many possible 16-bit binary words we may have?
2
distinct
objects
a1
16
a16 ai {0,1}, i 1,
2
16
,16
Example 2
Randomly Choosing k digits from decimal number, Find
the probability that the number is a valid octal number.
a1
ak ai {0,
,9}, i 1,
, k
10k
For any , P()=1/10k.
E b1
bk bi {0,
, 7}, i 1,
1
P( E ) 8 k 0.8k
10
k
, k
E 8k
Chapter 2
Combinatorial Analysis
Ordered Samples
without Replacement
Permutations
Permutations
清
以
心
可
也
可以清心也
以清心也可
清心也可以
心也可以清
也可以清心
Ordered Samples w/o Replacement
Permutations
n
distinct
objects
k
Drawing k objects, their order is noted, among n
distinct objects without replacement.
The number of possible outcomes is
P n(n 1)(n 2)
n
k
n!
(n k 1)
(n k )!
Example 3
Five letters are to be selected without replacement
from the alphabet (size 26) to form a word (possibly
nonsense). Find the probabilities of the following
events?
1. Begin with an s.
2. Contains no vowel.
3. Begins and ends with a consonant.
4. Contains only vowels.
E1: word
Define E2: word
E3: word
E4: word
Example 3
P(E1)=?
begins with an s.
contains no vowel.
begins and ends with a consonant.
contains only vowels.
P(E2)=?
P(E3)=?
P(E4)=?
Five letters are to be selected without replacement
from the alphabet (size 26) to form a word (possibly
nonsense). Find the probabilities of the following
events?
1. Begin with an s.
2. Contains no vowel.
3. Begins and ends with a consonant.
4. Contains only vowels.
E1: word
Define E2: word
E3: word
E4: word
Example 3
begins with an s.
contains no vowel.
begins and ends with a consonant.
contains only vowels.
P(E1)=?
P(E2)=?
P(E3)=?
P(E4)=?
26
P
26 25 24 23 22
ai {a, , z}
5
a1a2 a3a4 a5
a
a
,
i
j
For any , P()=1/||.
i
j
E1 1 25 24 23 22
P( E1 )
E2 21 20 19 18 17
P( E2 )
E3 21 24 23 22 20
P( E3 )
E4 5 4 3 2 1
P( E4 )
1
E1
||
1
E2
||
1
E3
||
1
E4
||
0.0385
0.3093
0.6462
1.52 102
Chapter 2
Combinatorial Analysis
Unordered Samples
without Replacement
Combinations
Combinations
n distinct
objects
Choose k objects
n distinct
objects
Combinations
yycchhooiciceess??
n
a
m
n
a
w
m
o
HHow
Choose
Choosekkobjects
objects
Drawing k objects, their order is unnoted, among
n distinct objects w/o replacement, the number
of possible outcomes is
n n(n 1) (n k 1)
n!
C
k!
(n k )!k !
k
n
k
This notation is preferred
n
More on k
n(n 1) (n k 1)
n
k!
k 0
k 0
k 0
Examples
n(n 1) (n k 1)
n
k!
k
0
1 1 2 3
1
3!
3
2.5 2.5 1.5 0.5
0.3125
3!
3
k 0
k 0
Example 4
The mathematics department consists of 25 full professors, and
15 associate professors, and 35 assistant professors. A
committee of 6 is selected at random from the faculty of the
department. Find the probability that all the members of the
committee are assistant professors.
75
x
6
35
Denoting the all-assistant event as E, E
6
1 35 75
P( E ) E
6 6
Example 5
A poker hand has five cards drawn from an ordinary deck of 52
cards. Find the probability that the poker hand has exactly 2
kings.
52
x
5
4 48
Denoting the 2-king event as E, E
2 3
4 48
1 2 3
P( E ) E
52
5
Example 6
1 2 3
1 2 3
||=?
|E|=?
r
r
Two boxes both have r balls numbered 1,
2, … , r. Two random samples of size m and n
are drawn without replacement from the 1st
and 2nd boxes, respectively. Find the
probability that these two samples have
exactly k balls with common numbers.
m
n
P(“k matches”) = ?
E
1
P( E ) | E |
||
1
P( E ) | E |
||
Example 6
1 2 3
r
m
1 2 3
r
n
r r
| |
m n
r m r m
| E |
m k n k
# possible outcomes from the 1st box.
# possible k-matches.
# possible outcomes from the 2nd box
for each k-match.
1
P( E ) | E |
||
Example 6
1 2 3
r
m
1 2 3
r
n
r r
| |
m n
r m r m
| E |
m k n k
m r m
k
n
k
P( E )
r
n
1
P( E ) | E |
||
Example 6
1 2 3
r
m
1 2 3
r
n
r r
| |
m n
r m r m
| E |
m k n k
m r m
k
n
k
P( E )
r
n
1
P( E ) | E |
||
Example 6
1 2 3
r
m
1 2 3
r
n
m r m
k
n
k
P( E )
r
n
1
P( E ) | E |
||
Example 6
1 2 3
r
m
1 2 3
r
n
m r m
k
n
k
P( E )
r
n
1
P( E ) | E |
||
Example 6
1 2 3
r
m
1 2 3
r
n
m r m n r n
k
n
k
k
m
k
P( E )
r
r
n
m
Exercise
1
P( E ) | E |
||
1 2 3 m r r m
m n r n
1 2 3 k n r k n k m k
證明
r
r
n
m
m r m n r n
k
n
k
k
m
k
P( E )
r
r
n
m
Chapter 2
Combinatorial Analysis
Binomial
Coefficients
Binomial Coefficients
x y
1
x y
2
x y
3
x y
4
x y
0
1
x y
x 2 2 xy y 2
x 3 3 x 2 y 3xy 2 y 3
x 4 x y 6 x y 4 xy y
4
3
2
2
3
4
x y
Binomial Coefficients
x y
1
x y
2
x y
3
x y
4
x y
0
1
x y
x 2 2 xy y 2
x 3 3 x 2 y 3xy 2 y 3
x 4 x y 6 x y 4 xy y
4
3
2
2
3
4
n
?
x y
n
?
Binomial Coefficients
x y
n
x y x y x y
x y
n terms
x n ? x n1 y ? x n2 y 2
? x n k y k
yn
x y
n
?
Binomial Coefficients
x y
n
x y x y x y
x y
n boxes
x n ? x n1 y ? x n2 y 2
n
0
n
1
n
2
? x n k y k
n
k
yn
n
n
n
Facts: 1. 0 for k n
k
n
2. 0 for k 0
k
Binomial Coefficients
x y
n
x y x y x y
x y
n
n nk k
n k nk
x y x y
k 0 k
k 0 k
n nk k
n k nk
x y x y
k 0 k
k 0 k
n nk k
n k nk
x y x y
k k
k k
n
Properties of Binomial Coefficients
x y
n
n k nk
x y
k 0 k
n
Properties of Binomial Coefficients
n n n k nk
1 1
k 0 k
k 0 k
n
1 1
2
n
n
x y
n
n k nk
x y
k 0 k
n
Properties of Binomial Coefficients
n
n
n
k
k nk
1 1 1
k 0 k
k 0 k
n
1 1
0
n
x y
n
n k nk
x y
k 0 k
n
Properties of Binomial Coefficients
Exercise
Properties of Binomial Coefficients
n不同物件任取k個
第一類取法:
n 1
k
第二類取法:
n 1
k
1
n n 1 n 1
k k 1 k
Properties of Binomial Coefficients
Pascal Triangular
0
0
1
0
2
0
3
0
4
0
1
1
3
2
3
1
4
1
2
2
2
1
4
2
3
3
4
3
4
4
n n 1 n 1
k k 1 k
Properties of Binomial Coefficients
Pascal Triangular
1
0
0
1
1
1
0
2
0
1
1
4
0
3
0
1
2
4
3
1
1
2
2
2
1
3
3
4
1
1
1
6
4
2
3
2
1
4
4
3
3
3
1
4
4
Properties of Binomial Coefficients
n
n 1
k n
k
k 1
吸星大法
Example 7-1
n
n k n n k nk
x
1
x
x
1
k 0 k
k 0 k
n
n
n
Fact: 2
k 0 k
n
Example 7-2
k n n 1
n k n n k n n k n n 1
k k k n
n
k 0 k
k 1 k 1
k 0 k
k 1 k
k 1 k 1
n
x n 1 n 1
n 1
n
n
x
1
1
x
x 11
x 0
x 1 n
k n 1
n
k 0
n 1 n 1
n
1
n 1
n
n
2
k 0 k
k
?
kx+1
簡化版
Example 7-2
k n n 1
n 1 n 1
n k n n
n 1
n
2
k
n
k
n
k
k
1
k
k
k 0
k 1
k 1
k 0
n
kk+1
簡化版
Example 7-3
k n
n k n
n
n 1
k (k 1) k (k 1) n (k 1)
k
k
k
1
k 0
k 2
k 2
n
n2 n 2
n 2
n2
n
(
n
1)2
n(n 1)
n(n 1)
k
2
k
k 2
k 0
k n
kk+2
?
Negative Binomial Coefficients
n
k n k 1
1
k
k
Negative Binomial Coefficients
n
k n k 1
1
k
k
How to memorize?
k 11
k (n)
n
kk n
1
kk
k
Negative Binomial Coefficients
n
k n k 1
1
k
k
這公式真的對嗎?
k (n+k1) 1
n k 1
k
k
1
1 1
k
k
k
1
n
k
Negative Binomial Coefficients
n n(n 1) (n k 1)
k!
k
1
k
n(n 1)
(n k 1)
k!
(n k 1) (n 1)n
k n k 1
1
1
k!
k
k
Chapter 2
Combinatorial Analysis
Some Useful
Mathematic Expansions
Some Useful Mathematic Expansions
Some Useful Mathematic Expansions
1 z z
1 z 1
1 z
z 2
zz
z2
2
3
z z
z3
2
Some Useful Mathematic Expansions
1
1
1 z 1 ( z )
1 ( z ) ( z ) 2 ( z )3 ( z ) 4
1 z z 2 z3 z 4
1
1 z z2
1 z
Some Useful Mathematic Expansions
2
1
2
2
1
z
z
1
z
z
1 z
1 ? z ? z 2 ? z3 ? z 4
1
1 z z2
1 z
Some Useful Mathematic Expansions
2
3
2
1
z
z
1
2
2
1
z
z
1
z
z
1 z
1 2 z 3z 2 4 z 3 5 z 4
1
2
2
1
z
z
1
z
z
1 z
1 ? z ? z 2 ? z3 ? z 4
n
1
2
3
4
1
?
z
?
z
?
z
?
z
1 z
1
1 z z2
1 z
Some Useful Mathematic Expansions
n
n
n
1
1 ( z ) ( z ) 1
1 z
n
n
k nk
( z ) 1
(1)k z k
k 0 k
k 0 k
n k 1 k
n k 1
k
k k
(1) (1) z k z
k
k 0
k 0
Some Useful Mathematic Expansions
Some Useful Mathematic Expansions
z值沒有任何限制
1 z z2
z k 1 z z 2
1 z z 2
z
k 1
z k 2 z k 3
z 1 z z
k 1
2
1
z k 1 1 z k 1
1 z
1 z 1 z
Some Useful Mathematic Expansions
Chapter 2
Combinatorial Analysis
Unordered Samples
with Replacement
Discussion
投返
有序
無序
n
k
?
非投返
n
k
P
n
k
Unordered Samples with Replacement
n不同物件任取k個
可重複選取
n不同物件,每一
中物件均無窮多個
從其中任取k個
Unordered Samples with Replacement
z
0
z1 z 2 z 3
z
0
z1 z 2 z 3
z
0
z1 z 2 z 3
此多項式乘開後
zk之係數有何意義?
Unordered Samples with Replacement
z
0
z
z1 z 2 z 3
0
z1 z 2 z 3
1 z z 2 z 3
1 z z
1 z z z
2
1
1 z
3
n
n k 1 k
z
k
k 0
n
2
z3
1 z z
z
2
0
z1 z 2 z 3
z3
Unordered Samples with Replacement
投返
有序
n
k
非投返
n
k
P
n k 1 n
無序
k k
Example 8
Suppose there are 3 boxes which can supply infinite red
balls, green balls, and blue balls, respectively. How many
possible outcomes if ten balls are chosen from them?
n=3
k = 10
3 10 1 12
10 10
Example 9
There are 3 boxes, the 1st box contains 5 red balls, the 2nd
box contains 3 green balls, and the 3rd box contains infinite
many blue balls. How many possible outcomes if k balls are
chosen from them.
觀察: k=1有幾種取法
k=2有幾種取法
k=3有幾種取法
k=4有幾種取法
Example 9
1 z z
2
z 3 z 4 z 5 1 z z 2 z 3 1 z z 2 z 3
此多項式乘開後
zk之係數卽為解
Example 9
1 z z
2
z 3 z 4 z 5 1 z z 2 z 3 1 z z 2 z 3
1 z6 1 z4 1
1
1 z 6 1 z 4
1 z 1 z 1 z
1
z
1
1 z 4 z 6 z10
1 z
3
3
3 j 1 j
1 z z z
z
j
j 0
4
6
10
j 2 j
1 z z z
z
j
j 0
4
6
10
此多項式乘開後
zk之係數卽為解
Example 9
j 2 j
1 z z z j z
j 0
4
6
10
j 2 j
j 2 j
j 2 j 10 j 2 j
4
6
z z
z z
z z
z
j
j
j
j
j 0
j 0
j 0
j 0
j 2 j j 2 j 4 j 2 j 6 j 2 j 10
z
z
z
z
j
j
j
j
j 0
j 0
j 0
j 0
Coef(zk)=?
此多項式乘開後
zk之係數卽為解
Example 9
j 2 j j 2 j 4 j 2 j 6 j 2 j 10
z
z
z
z
j
j
j
j
j 0
j 0
j 0
j 0
從z0開始
jk
從z4開始
jk4
從z6開始
jk6
從z10開始
jk10
k 2 k k 2 k k 4 k k 8 k
z
z
z
z
k 0 k
k 4 k 4
k 6 k 6
k 10 k 10
Coef(zk)=?
Example 9
j 2 j j 2 j 4 j 2 j 6 j 2 j 10
z
z
z
z
j
j
j
j
j 0
j 0
j 0
j 0
從z0開始
jk
從z4開始
jk4
從z6開始
jk6
從z10開始
jk10
k 2 k k 2 k k 4 k k 8 k
z
z
z
z
k 0 k
k 4 k 4
k 6 k 6
k 10 k 10
Coef(zk)=?
Example 9
k 2 k k 2 k k 4 k k 8 k
z
z
z
z
k 0 k
k 4 k 4
k 6 k 6
k 10 k 10
k 2
k
k 2 k 2
k
k
4
Coef ( z k )
k 2 k 2 k 4
k k 4 k 6
k 2 k 2 k 4 k 8
k
k
4
k
6
k 10
0k 4
4k 6
6 k 10
10 k
Example 9
k 2 k 2 k 4 k 8
Coef ( z k )
k
k
4
k
6
k 10
k 2
k
k 2 k 2
k
k
4
Coef ( z k )
k 2 k 2 k 4
k k 4 k 6
k 2 k 2 k 4 k 8
k
k
4
k
6
k 10
0k 4
4k 6
6 k 10
10 k
Chapter 2
Combinatorial Analysis
Derangement
Derangement
最後! ! !
每一個人都拿
到別人的帽子
錯排
1. P( E0n ) ?
2. lim P( E0n ) ?
Example 10
n
3. P ( Ekn ) ?
n
k
E
n人中正好k人拿
對自己的帽子
n
0
E
n人中無人拿
對自己的帽子
1. P( E0n ) ?
2. lim P( E0n ) ?
Example 10
n
3. P ( Ekn ) ?
n
k
E
?
E ?
n
k
n
0
E
E ?
n
0
1. P( E0n ) ?
2. lim P( E0n ) ?
Example 10
n
k
n
0
E
E
n
3. P ( Ekn ) ?
n人中正好k人拿對自己的帽子
n!
n人中無人拿對自己的帽子
P ( E ) ?1/2!
2
0
P ( E ) ?2/3!
3
0
2
3
1
2
1
3
1
2
1
2
1
2
3
1. P( E0n ) ?
Example 10
n
k
n
0
E
E
n人中正好k人拿對自己的帽子
n人中無人拿對自己的帽子
2. lim P( E0n ) ?
n
3. P ( Ekn ) ?
n!
令Ai表第i個人拿了自己帽子
P( E ) 1 P( E ) 1 P( A1 A2
n
0
n
0
An )
1. P( E0n ) ?
Example 10
Ai表第i個人拿了自己帽子
P( E0n ) 1 P( A1 A2
An )
2. lim P( E0n ) ?
n
3. P ( Ekn ) ?
1. P( E0n ) ?
(n 1)!
n!
Example 10
P ( Ai )
2. lim P( E0n ) ?
n
3. P ( Ekn ) ?
Ai表第i個人拿了自己帽子
P( E0n ) 1 P( A1 A2
An )
...
1
...
1
2
n
1. P( E0n ) ?
(n 1)!
n!
(n 2)!
,i j
n!
Example 10
P ( Ai )
P ( Ai A j )
2. lim P( E0n ) ?
n
3. P ( Ekn ) ?
Ai表第i個人拿了自己帽子
P( E0n ) 1 P( A1 A2
An )
...
1
2
...
1
2
n
n
計 項
1
(n 1)!
n!
n
計 項
2
1. P( E0n ) ?
(n 2)!
,i j
n!
Example 10
P ( Ai )
P ( Ai A j )
Ai表第i個人拿了自己帽子
P( E0n ) 1 P( A1 A2
2. lim P( E0n ) ?
An )
n
3. P ( Ekn ) ?
n (n k )!
Sk
k n!
n!
(n k )!
k !(n k )! n !
1
k!
(n 3)!
P( Ai Aj Ak )
,i j k
n!
n
計 項
3
1. P( E0n ) ?
Example 10
2. lim P( E0n ) ?
n
3. P ( Ekn ) ?
Ai表第i個人拿了自己帽子
P( E0n ) 1 P( A1 A2
An )
1 1
P( E ) 1 1
2! 3!
1
n
0
n 1
n (n k )!
Sk
k n!
n!
(n k )!
k !(n k )! n !
1
n !
1
1
k!
1 1
2! 3!
1
n 1
1
n!
1. P( E0n ) ?
Example 10
2. lim P( E0n ) ?
n
3. P ( Ekn ) ?
Ai表第i個人拿了自己帽子
P( E0n ) 1 P( A1 A2
An )
1 1
P( E ) 1 1
2! 3!
1
n
0
1 1
P ( E ) 1 1
2! 2
2
0
1
n !
1 1 1
P( E ) 1 1
2! 3! 3
1 1 1 3
P( E ) 1 1
2! 3! 4! 8
4
0
n 1
3
0
1. P( E0n ) ?
2. lim P( E0n ) ?
Example 10
n
3. P ( Ekn ) ?
Ai表第i個人拿了自己帽子
P( E0n ) 1 P( A1 A2
An )
n 1 1
1 1
P( E ) 1 1 1
n !
2! 3!
n 1 1
1 1 1
1 1
n !
1! 2! 3!
n
0
1 1 1
P( E ) 1
1! 2! 3!
n
0
1
1
n!
n
1. P( E0n ) ?
2. lim P( E0n ) ?
Example 10
n
3. P ( Ekn ) ?
Ai表第個人拿了自己帽子
P( E0n ) 1 P( A1 A2
An )
n 1 1
1 1
P( E ) 1 1 1
n !
2! 3!
n 1 1
1 1 1
1 1
n !
1! 2! 3!
n
0
lim P( E ) e
n
0
n
1 1 1
P( E ) 1
1! 2! 3!
n
0
1
1
n!
n
1
1. P( E0n ) ?
2. lim P( E0n ) ?
Example 10
P( E )
n
0
P( E )
n
k
E0n
n!
Ekn
n!
1 1 1
P( E ) 1
1! 2! 3!
n
0
n
3. P ( Ekn ) ?
E0n n ! P ( E0n )
Ekn ?
1
1
n!
n
1. P( E0n ) ?
2. lim P( E0n ) ?
Example 10
P( E )
n
0
E0n
n!
nk
E
n 0
n
P( Ek )
n! k n!
nk
E
n (n k )! 0
k n ! (n k )!
Ekn
1
P( E ) P( E0n k )
k!
n
k
n
3. P ( Ekn ) ?
E0n n ! P ( E0n )
n
E ?
k
n
k
E0n k
...
...
...
...
k matches
nk mismatches
1. P( E0n ) ?
Example 10
2. lim P( E0n ) ?
n
3. P ( Ekn ) ?
1
1 1
3
P ( E ) ? P E0
2!
2! 3
5
2
1
P( E ) P( E0n k )
k!
n
k
Remark
n
P
(
E
)
?
1
k 0
n
k
Chapter 2
Combinatorial Analysis
Calculus
Some Important Derivatives
Derivatives for
multiplications —
duv
u v uv
dx
Derivatives for
divisions —
d v uv u v
2
dx u
u
Chain rule —
dy dy du
dx du dx
y f (u )
u g ( x)
L’Hopital rule
f ( x) 0
Suppose as x c, we have
or .
g ( x) 0
f ( x)
f ( x)
lim
lim
x c g ( x )
x c g ( x)
Examples
Integration by Part
duv udv vdu
duv
udv
vdu
uv udv vdu
Integration by Part
b
b
udv
uv
vdu
uv udv vdu
a
udv uv a vdu
b
a
The Gamma Function
( ) x
0
e dx, 0
1 x
( ) x
0
Example 12
e dx, 0
1 x
( ) x
0
e dx, 0
1 x
Example 12
(1) e x dx
0
e
x
0
0 (1)
1
( ) x
0
Example 12
e dx, 0
1 x
( ) x
e dx, 0
1 x
0
Example 12
( ) x e dx x 1de x
1 x
0
0
x
1 x
x
e
0
1 x
e
0
0
e x dx 1
0
( 1) x
( 1)( 1)
0
2 x
e dx
(1)
( ) x
0
Example 12
e dx, 0
1 x
( ) ( 1)( 1)
( 1)( 2)( 2)
( 1)( 2)( 3)
( 1)!
(1)
( ) x
0
Example 12
e dx, 0
1 x
e
x2 / 2
dx ?
( ) x
e dx, 0
1 x
0
Example 12
e
x2 / 2
dx
I
2
2
0
0
e
e
x2 y 2
2
x2 / 2
dx e
y2 / 2
dxdy
2
0
0
e
x2 / 2
dx ?
dy I 2
e
2
r2 / 2
rdrd
2
2
r
r / 2
e
d d d 2
0
2
2
( ) x
e dx, 0
1 x
0
Example 12
e
x2 / 2
dx 2
( ) x
e dx, 0
1 x
0
Example 12
e
x2 / 2
dx 2
x
1
1/ 2 x
x e dx x1/ 2e x dx
x 0
2 0
2 1/ 2
2
y2
2
y
y
2
y /2
y2 e
d
0
2
2
2
y
y 0
2 y2 / 2
y2 / 2
e
ydy 2 e
dy
0
y
2 y2 / 2
e
dy
2
Let x y 2 / 2
( ) x
0
Example 12
e dx, 0
1 x
( ) x
0
e dx, 0
1 x
Example 12
3 1 1
?
2
2 2 2
5 3 3 3
?
4
2 2 2
7 5 5 15
?
8
2 2 2
© Copyright 2026 Paperzz