Spin Chain in Gauge Theory
and Holography
Yong-Shi Wu
Department of Physics, University of Utah,
Center for Advanced Study, Tsinghua University,
and Shanghai Institute for Advanced Study, USTC
Collaborators:
Bin Chen and Xiao-Jun Wang
Motivation: Holography
• The Gauge/String Theory Duality
(t’Hooft; Polyakov: 1970’s)
• The Holographic Principle
(t’ Hooft, 1993)
• The AdS/CFT(SCYM) Correspondence
(Maldacena, 1997)
The key to understand holography:
to find string in gauge theory!
Gauge/String Theory Duality
(History)
•
‘t Hooft large-N Limit: (say, for U(N) group)
2
N ∞, g
0, with gYM N fixed
Planar diagram are dominant
Summation of planar diagrams
= Emergence of string worldsheet
• In (confining) QCD,
Color flux tube = QCD string
or in loop equation formalism,
Wilson loop = a sort of string-like
dynamical variable
Maldacena Conjecture:
AdS/SCYM (AdS/CFT) Duality
•
•
•
•
•
•
IIB string theory on AdS5 S 5 (w/ N 5-flux)
= D=4, Ñ=4 SYM (w/ U(N) gauge group)
Share same symmetry groups
A realization of holography:
Bulk propagation
Boundary correlations
Plane-wave (BMN) limit:
5
S
Boosting along an angular direction on
Plane gravitaional wave background
IIB string theory in plane wave limit is solvable
New way to AdS/SCYM duality
Calculate anomalous dimension in Ñ=4 SYM
Compare with string spectrum in plane wave
BMN limit in Ñ=4 SYM
• Bosonic Field content:
adjoint
A , i i 1,,6
• J(=L) rotates Z 5 i 6
Δ measures the dimension
• The BMN limit
gYM N , J , J / gYM N fixed
2
• So
2
2
N , J , J 2 / N
and
gYM 1
fixed
fixed is allowed
(Perturbative regime in SYM is now allowed!)
Spin Chain in SYM (I)
(Minahan and Zarembo, 2002)
Consider long composite operators
O I ( x ) Tr{ i1 ( x ) i2 ( x )... iL ( x )}
They get mixed under one-loop renormalization:
OI
( bare)
( x ) Z IJ O J
( ren )
( x)
J
Anomalous Dimension Matrix
( IJ )
IJ
|
ln Z IJ ( )
(
ren
)
Spin Chain in SYM (II):
Planar One-Loop Results
Large-N
∙∙∙
Planar
∙∙∙
Nearest-neighbor interactions
2
16
{K
l ,l 1
2 Pl ,l 1 2}
l
∙∙∙
∙∙∙
Kl ,l 1 il il 1 jl jl 1
Pl ,l 1 il il 1
jl 1
∙∙∙
jl
∙∙∙
Γis the Hamiltonian of an
integrable SO(6) spin chain!
A Gauge Theory Dual for
Open Strings (I)
Trick: Adding D-branes: where open string ends
Doing orientifolding: un-oriented strings
AdS^5xS_5/Z_2 Orientifold:
O7-Plane + 4 D7-branes: at
2N D3-branes: in
x1, x 2, x 3directions
Near-Horizon Limit of D3-branes:
1 to
6,
Neumann:
x
Dirichlet:
x 7 x8 0
x
x
9 ;
_
( x , x ) (W ,W )
7
8
_
( x , x ) (Z , Z )
5
6
A Gauge Theory Dual for
Open Strings (II)
Gauge Theory Dual: D=4, Ñ=2
Vector multiplet: (V,W)
Sp(N) theory
adjoint
Hypermultiplet:
(Z,Z’) anti-symmetric
(3,3) strings
~
4 Hypermultiplets: ( q A , q A )
fundamental
(A=1,..,4)
(3,7) strings
In Ñ=1 language, V: vector supermultiplet
All others: chiral supermultiplets
~
Superpotential:
Ŵ~
qAW q A tr{( W )( Z )( Z ' )}
Anomalous Dimension and
Open Spin Chain
Composite operators: ( open)
OI
pqQ p(i1 )(iL )Q q
(Ф=Z,Z’,W;
Ω= invariant 2-tensor)
“quarks”
Bulk Interactions: the same as in D=4, Ñ=4 SYM (A Theorem)
Bdry Interactions: additional Feynman diagrams!
∙∙∙
∙∙∙
∙∙∙
open
4 2
L 1
l 1
(1 Pl ,l 1 )
(1 2 )
2
4
integrable
bdry terms!
1 I I
2 I I diag (0,0,1)
Γis the Hamiltonian of an
integrable open SU(3) spin chain!
Matching Open String Spectrum
Open string Spectrum:
L 1
Nn 1
n
g s Nn2
L
Algebraic Bethe Ansatz:
Ground state: (Ferromagnetic pseudo-vacuum)
| 0 ~ Q p( Z) L Q q
( L 1; E0 0)
Single Z’ excitation (in Neumann direction;Δ-L=2)
2
2
n
n
g
Nn
s
Z ' 2 sin 2
2L
4L
2 L2
Single W excitation (in Dirichlet direction; Δ-L=2)
W
n
n 2 g s Nn2
2
2 sin
Z'
2
2( L 1)
4L
2L
Further Developments
Higher orders and non-planar diagrams
two-, three loops: numerical
Non-planar: NNN-interactions
? To all orders, a long-ranged spin chain?
Semi-classical spinning strings: Beyond BMN
SO(6) rank 3
allowing three commuting ( J1 , J 2 , J 3 )
Start with classical solutions (Eqs of motion plus Virasoro)
For two or three large J’s, semi-classical analysis (Tseytin et al.)
Open spinning strings and open spin chains (Chen, Wang and Wu)
Incorporating fermions: PSU(2,2|4) spin chain?
(Beisert, Staudacher, et al.)
Other Susy scalar or gauge field theories:
Orbifolded gauge theories, Wess-Zumino models: (Wang and Wu; Rioban)
Spin-chain induced nonlinear sigma models: (Kruczenski and et al.)
? Toward a more precise formulation of gauge/string duality?
Summary
Integrable spin chain emerges in perturbative
gauge theories, out of Feynman diagrams!
Gauge/string duality can now be tested
at string level (beyond supergravity)
for plane-wave limit and spinning strings
Implications: The door is just open for having
A profound relation between
Yang-Baxter and Yang-Mills
better understanding of Holography, namely
AdS/CFT or gauge/string theory duality
Speculations
There seems to be interesting
integrable or quantum group (e.g.
Yangian) symmetry structure hidden
in (perturbative) gauge or string
theory (related to twistors?).
There should be new way to
formulate or construct string theory
(using gauge theory or discrete spin
chain).
© Copyright 2026 Paperzz