EDM and CPV in the t system Gabriel González Sprinberg Instituto de Física, Facultad de Ciencias Montevideo Uruguay [email protected] DIF06 INFN Laboratori Nazionali di Frascati Outline 1. Electric Dipole Moment 1.1 Definition d B f B = , Z, g, … f = e, , t, ..., b, t 1.2 Experiments 2. Observables 2.1 High energies 2.2 Low energies 3. Conclusions 1. EDM 1.1Definition P and T-odd interaction of a fermion with gauge fields: Classical electromagnetism Ordinary quantum mechanics H EDM d E , dd s Relativistic quantum mechanics: Dirac equation i ) m d 5 F H i ( eA 2 Non-relativistic limit: H H EDM d E 1. EDM 1.1Definition SYMMETRIES: Time reversal T, Parity P Besides, chirality flip (some insight into the mass origin) EDM t t LANDAU 1957 T , P odd interactions : E E, H EDM In QFT: s s H EDM CPT Invariance CP T 1. EDM 1.1Definition t t EDM SM : • vertex corrections • at least 4-loops Beyond SM: • one loop effect (SUSY,2HDM,...) • dimension six effective operator 1. EDM SM : 1.1Definition = 0 !!! V V* E.P.Shabalin ’78 We need 3-loops for a quark-EDM, and 4 loops for a lepton... J.F.Donoghue ’78 I.B.Khriplovich,M.E.Pospelov ‘90 A.Czarnecki,B.Krause ‘97 1. EDM 1.1Definition Fermion of mass mf generated by physics at L scale has EDM mf/L2 T-odd tEDM has particular interest and depends on the underlying physics of CP violation 1. EDM Effective Lagrangian: CPV: Operators: Other operators: 1.1Definition 1. EDM 1.1Definition Z t t t WEDM t EDM More sensitivity HIGH ENERGY (Z-peak) LOW ENERGY 1. EDM 1.1Definition 5 ( p , p ) ie 5 aV (q 2 ) 5 q dV (q 2 ) V = , Z For q2=0 EDM q2=MZ2 WEDM t d t dZ GAUGE INVARIANT OBSERVABLE QUANTITIES Beyond SM EDM: Loop calculations 1. EDM PDG ’06 1.2 Experiments 95% CL EDM BELLE ‘02 Re(d ) : ( 2.2 to 0.45) 1016 e cm t Im(d ) : (0.25 to 0.008) 10 t WEDM ALEPH 1990-95 LEP runs Re(d ) 0.50 10 e cm t Z 17 Im(d ) 1.1 1017 e cm t Z 16 ecm 1. EDM 1.2 Experiments For other fermions…. e d (0.069 0.074) 10 26 e cm d (3.7 3.4) 1019 e cm dn 0.63 1025 e cm, 90% CL 2. Observables SM for EDM is well below within present experimental limits: dq 1032 1034 ecm CKM 3-loops de 1038 ecm CKM 4-loops Hopefully SM prediction mt e d d 1033 1034 ecm in the SM me t …15 orders of magnitude below experiments... 2. Observables Currents limits on electron EDM gives: dt 2.4 1024 ecm However, in many models the EDM do not necessarily scale as the first power of the masses. Multihiggs models 1-loop contributions Vectrolike leptons EDM scale as the cube of the mass! BSM t-EDM can go up to 10-19 e cm 2. Observables Non-vanishing signal in a tEDM observable NEW PHYSICS mt One expects: d e 2 L t special interest in heavy flavours tEDM: In order to be able to measure a genuine non-vanishing signal one has to deal with a CP -observable 2. Observables Indirect arguments: 2.1 High energies (e e t t ) (Z t t ) d t 2 Z any other physics may also contribute… Look for P , CP linear effects Genuine CPV observables in t–pair production: SPIN TERMS and/or SPIN CORRELATIONS 2. Observables Spin terms CP : 2.1 High energies angular distribution decay products of • Asymmetries in the decay products • Expectation values of tensor observables 2. Observables 2.1 High energies x: Transverse y: Normal z: Longitudinal 2. Observables 2.1 High energies Tensor observables: T (q q ) (q q ) (i j) ij i j mZ t t Z-peak: T ij c s ij dZ (q ) e W.Bernreuther,O.Nachtmann ‘89 Normal polarization: P Nt T odd, P even (and needs helicity-flip) Genuine CPV if P t N P t N 2. Observables 2.1 High energies d P a sin qt 2v (v a ) cos qt mt e t EDM (and P N ) is proportional to angular asymmetries, t N 2 to extract sinqt cosqt sinfh 2 t Z 2 (more details latter..) A One can measure A for t and/or t CP : A CPV 1 (A A ) 2 2. Observables 2.2 Low energies e e , t (s ) t (s ) Diagrams: dt dt 2. Observables 2.2 Low energies What about the linear terms? Interference with the axial part of Z-exchange, suppressed by q2/MZ2 2. Observables 2.2 Low energies 2. Observables 2.2 Low energies 2. Observables T ,P CPV 2.2 Low energies 2. Observables 2.2 Low energies 2. Observables 2.2 Low energies 2. Observables 2.2 Low energies + 2. Observables 2.2 Low energies 2. Observables 2.2 Low energies Bounds: For 106/7 t and at low/U energies upper bound Re(d t ) 1016 / 17 e cm 3. Conclusions Polarized beams open the possibility for new observables Improving the number of t–pairs ( ...1011? ) allows to lower the EDM bound by many (...2?) orders of magnitude These new bounds may be important for beyond the SM tphysics 3. Summary Discussions with J.Bernabeu, J.Vidal and A.Santamaría are gratefully acknowledged SOME REFERENCES J. Bernabeu, G.S., Jordi Vidal Nuclear Physics B 701 (2004) 87–102 Daniel Gomez-Dumm, G.S. Eur. Phys. J. C 11, 293{300 (1999) W. Bernreuther, A. Brandenburg, and P. Overmann Phys. Lett. B 391 (1997) 413; ibid., B 412 (1997) 425.
© Copyright 2026 Paperzz