feg2c3 elektromagnetika i

FEG2C3
ELEKTROMAGNETIKA I
Bambang Setia Nugroho
1
RECEIVER
Objective of this
Course:
TRANSMITTER
RF
Understand The
Concepts/Theories of
Electromagnetic
Waves Propagation
RF
IF
Baseband
IF
Baseband
2
Notation
Cartesian
Cylindrical
Spherical
Addition &
subtraction
Vector
Biot-Savart
Faraday
Perfect Dielectric
Conductor
Perfect Conductor
5
Calculus
Static
fields
3
Maxwell
Equation
Electrostatic
Magnetostatic
6
2
Coulomb
Lossy Dielectric
Uniform
Plane wave
propagation
Algebra
Dot product
Cross product
integral
Differential
4
1
Coordinat
Free space
Electromagnetic
Theories
/Laws
Integral form
Numerical
Method
Wave
equation,
wave
parameters,
Polarization,
Poynting
Vector,
Potentials,
capacitances,
inductances,
energy
Poisson & Laplacian
Moment Method
Differential form
Multilayer
Structures
Lenz
Oblique
Incident
Kom.
Optik
Lorentz
Gauss
Transmission
Line
Course Syllabi
Ampere
Elektromagnetika II
: Tools
: Review
Waveguide
Radiation
: Main Content
Antena dan
3
Propagasi
Aplikasi
Teori
Elektromagnetik
4
References
• William H. Hayt, Jr. . John A. Buck, Engineering
Electromagnetics 6th edition, McGraw-Hill
companies, 2001.
• Magdy F. Iskander, Electromagnetic Fields and
Waves, Prentice Hall International, 1992
• Stuart M. Wentworth, Fundamentals of
Electromagnetics with Engineering
Applications, John Wiley & Sons, inc., 2005
5
Vector Analysis
• Notation, Symbol  our convention !
A
: Vector A
A
: Scalar A,
not a vector
A  A ax
: unit vector 
direction of Vector A
: Magnitude A
A
A
: Graphical Representation of Vector A
6
Coordinate System
• Cartesian
• Cylindrical
• Spherical
Representation of a
Point in Coordinate
System
7
Vector Representation
A  Ax ax  Ay a y  Az az
A  A a  A a  Az az
A  Ar ar  A a  A a
• Transformation
– Cartesian  Cylindrical
– Cartesian  Spherical
– Cylindrical  Spherical
 x    cos  
 y     sin  
  

 z   z 
 x   r sin  cos  
 y    r sin  sin  
  

 z   r cos  
 a   cos  sin  0  ax 
 a     sin  cos  0  a 
  
 y
 az   0
0
1   az 
 ar   sin  cos  sin  sin 
  
 a   cos  cos  sin  cos 
 a    sin 
cos 
 
cos    ax 
 sin    a y 
0   az 
8
Elements of Length, Surface, and Volume
Cylindrical
Cartesian
Spherical
Please write the
elements of Length,
surface, and volume for
each of coordinate
system based on the
figures !
9
Vector Algebra
• Addition & Subtraction
• Multiplication
– Dot Product  scalar
– Cross Product  vector
10
Vector Calculus
• Integral
– Line integral
– Surface integral
– Volume integral
• Differential
– Gradient of Scalar
– Divergence
• Divergence theorem
– Curl
• Stoke’s Theorem
– Laplacian
f
 B
 A
2 f    f 
11
Vector Identities
   f   0
  fg   f g  g f
  A  0
  fA  f   A  A f


 2 f     f 


2 A     A      A
  f  g   f  g
 
   A  B    A    B
 A B   AB
 
   fA   f   A  f  A
A   B  C   B  C  A  C   A  B 
A  B  C   B  AC   C  A B
   A  B   B    A  A    B 
   A  B   A  B  B  A   B   A   A   B
12