Economics 30330: Statistics for Economics Problem Set 0 - Suggested Answers University of Notre Dame Instructor: Julio Garı́n Spring 2012 Review of Summations (40 points) 1. Evaluate: P3 j 0 1 2 3 (a) j=0 2 = 2 + 2 + 2 + 2 = 15 P3 2 2 2 2 2 (b) j=0 j = 0 + 1 + 2 + 3 = 14 P5 P5 P5 (c) j=1 = 2(1 + 2 + 3 + 4 + 5) − (3)(5) = 15 j=1 j − 3 j=1 (2j − 3) = 2 P1000 P1000 (d) j=1 = 5000 j=1 5 = 5 2. Show that: P P P + i Xi − i Yi i (Xi + Yi )P (a) =2 i Xi P P P P + i Xi − i Yi (Xi + Yi + Xi − Yi ) i (Xi + Yi )P P = i X Xi i i P 2Xi = Pi Xi Pi Xi = 2 Pi X i i =2 P + 2Xi Yi + Yi2 ) − i (Xi2 − 2Xi Yi + Yi2 ) 1 P = (b) 2 i 8Xi Yi P P P 2 2) − (Xi2 − 2Xi Yi + Yi2 ) (X 2 + 2Xi Yi + Yi2 − Xi2 + 2Xi Yi − Yi2 ) i i i (Xi + 2Xi Yi + Y P P = i i i 8Xi Yi i 8Xi Yi P 4Xi Yi = Pi i 8Xi Yi P Xi Yi 4 = Pi 8 i Xi Yi 1 = 2 2 i (Xi P 3. Calculate/expand the following: (a) 4 P (b) i=1 5 P (c) i=1 3 P (d) i=1 n P i2 = 12 + 22 + 32 + 42 = 30 x2i = x21 + x22 + x23 + x24 + x25 x = x + x + x = 3x x2 = x2 + x2 + ... + x2 = nx2 i=1 1 n x P x + x + ... + x nx = = =x n n i=1 n P P 4. Explain the difference between i x2i and ( i xi )2 . Construct an example to show that, in general, these quantities are not equal. P The expression i x2i represents the sum of the squares of the data; to calculate the P sum of squares, we square each observation and add up all those values. The expression ( i xi )2 represents the square of the sum of the data; to calculate the squared sum, we add up all of the observations and square that value. (e) One example: Let x = [1, 5, 2], that is, x1 = 3, x2 = 5, x3 = 2. Therefore, 3 X x2i = 9 + 25 + 4 = 38 i=1 3 X !2 xi = (3 + 5 + 2)2 = 100 i=1 2
© Copyright 2026 Paperzz