SSE2393/SSM3393 1. Thomas Algorithm Tridiagonal matrix A for Ax = b can be written as A = LU d1 e1 0 ··· 0 .. . .. c d . 2 2 e2 .. .. .. . . . 0 0 . . .. . cn−1 dn−1 en−1 . 0 ··· 0 cn α1 0 c 2 α2 .. . = 0 .. . .. . 0 ··· where dn 0 ··· 0 ··· .. .. . . 0 0 .. . cn−1 αn−1 0 0 cn α n 0 ··· ... 1 β1 0 .. . 0 1 β2 .. . . . . . . . . . . 0 0 ··· 0 1 βn−1 0 ··· 0 0 1 α 1 = d1 αi = di − ci βi−1 , i = 2, 3, . . . , n ei βi = , i = 1, 2, 3, . . . , n − 1 αi Solve Lw = b using forward substitution algorithm, wi = (bi − ci wi−1 )/αi , w1 = b1 /α1 , i = 2, 3, ..., n Solve U x = w using backward substitution algorithm, xn = w n , xi = wi − βi xi+1 , i = n − 1, n − 2, . . . , 1 2. Lagrange interpolation formula P (x) = n X Li (x)fi dengan Li (x) = i=0 n Y (x − xj ) j=0 (xi − xj ) j6=i 3. Newton’s divided difference formula [0] [1] [2] P (x) = f0 + f0 (x − x0 ) + f0 (x − x0 )(x − x1 ) + · · · [n] + f0 ](x − x0 )(x − x1 ) · · · (x − xn−1 ); [j−1] [0] fi = fi , [j] fi [j−1] f − fi = i+1 xi+j − xi 8 4. Newton’s forward difference formula r(r − 1) 2 r(r − 1)(r − 2) 3 ∆ f0 + ∆ f0 2! 3! r(r − 1)(r − 2) · · · (r − n + 1) n ∆ f0 ; h = xi+1 − xi . +··· + n! P (x) = P (x0 + rh) = f0 + r∆f0 + 5. Newton’s backward difference formula r(r + 1) 2 r(r + 1)(r + 2) 3 ∇ fn + ∇ fn 2! 3! r(r + 1) · · · (r + n − 1) n ∇ fn ; h = xi+1 − xi . +··· + n! P (x) = P (xn + rh) = fn + r∇fn + 6. 2–points centered difference formula f 0 (x) = 1 [f (x + h) − f (x − h)] 2h 7. 3–points forward difference formula f 0 (x) = 1 [−f (x + 2h) + 4f (x + h) − 3f (x)] 2h 8. 3–points backward difference formula f 0 (x) = 1 [3f (x) − 4f (x − h) + f (x − 2h)] 2h 9. 5–points difference formula f 0 (x) = 1 [−f (x + 2h) + 8f (x + h) − 8f (x − h) + f (x − 2h)] 12h 10. 3–points centered difference formula f 00 (x) = 1 [f (x + h) − 2f (x) + f (x − h)] h2 11. 5–points difference formula f 00 (x) = 1 [−f (x + 2h) + 16f (x + h) − 30f (x) + 16f (x − h) − f (x − 2h)] 12h2 12. 5–points fourth order centered difference formula f 0000 (x) = 1 [f (x − 2h) − 4f (x − h) + 6f (x) − 4f (x + h) + f (x + 2h)] h4 9 13. Trapezoidal rule Z xi+1 f (x)dx = xi h [f (xi ) + f (xi+1 )] 2 14. Simpson’s rule Z xi+2 xi f (x)dx = h [f (xi ) + 4f (xi+1 ) + f (xi+2 )] 3 15. 3/8 Simpson’s rule Z xi+3 xi 3 f (x)dx = h[f (xi ) + 3f (xi+1 ) + 3f (xi+2 ) + f (xi+3 )] 8 16. 2-points Gaussian quadrature Z 1 1 1 f (x) dx = f (− √ ) + f ( √ ) −1 3 3 17. 3–points Gaussian quadrature s Z 1 s 5 3 8 5 3 f (x) dx = f (− ) + f (0) + f ( ) 9 5 9 9 5 −1 18. Power method 1 Av(k) v(k+1) = mk+1 19. Taylor’s series of order n yi+1 = yi + hyi0 + h2 00 hn (n) yi + · · · + yi 2! n! 20. Euler’s method yi+1 = yi + hf (xi , yi ) 21. Second order Runge–Kutta methods (a) Midpoint method h k1 yi+1 = yi + k2 ; k1 = hf (xi , yi ), k2 = hf (xi + , yi + ). 2 2 (b) Improved Euler’s method 1 yi+1 = yi + (k1 + k2 ); k1 = hf (xi , yi ), k2 = hf (xi + h, yi + k1 ). 2 10 (c) Heun’s method 2 2 1 yi+1 = yi + (k1 + 3k2 ); k1 = hf (xi , yi ), k2 = hf (xi + h, yi + k1 ). 4 3 3 22. Fourth order Runge–Kutta method 1 yi+1 = yi + (k1 + 2k2 + 2k3 + k4 ) 6 h k1 k1 = hf (xi , yi ), k2 = hf (xi + , yi + ), 2 2 h k2 k3 = hf (xi + , yi + ), k4 = hf (xi + h, yi + k3 ) 2 2 23. Finite difference formulae for partial differential equation ∂u ∂x ! ∂u ∂x ! ∂u ∂x ! = ui+1,j − ui,j h (forward difference) = ui,j − ui−1,j h (backward difference) = ui+1,j − ui−1,j 2h (centered difference) i,j i,j ∂ 2u ∂x2 i,j ! = i,j ui+1,j − 2ui,j + ui−1,j h2 (centered difference) 11
© Copyright 2026 Paperzz