Hindawi Publishing Corporation International Journal of Combinatorics Volume 2012, Article ID 284383, 9 pages doi:10.1155/2012/284383 Research Article Total Vertex Irregularity Strength of the Disjoint Union of Sun Graphs Slamin,1 Dafik,2 and Wyse Winnona2 1 2 Information System Study Program, University of Jember, Jember 68121, Indonesia Mathematics Education Study Program, University of Jember, Jember 68121, Indonesia Correspondence should be addressed to Slamin, [email protected] Received 11 January 2011; Accepted 31 March 2011 Academic Editor: R. Yuster Copyright q 2012 Slamin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A vertex irregular total k-labeling of a graph G with vertex set V and edge set E is an assignment of positive integer labels {1, 2, . . . , k} to both vertices and edges so that the weights calculated at vertices are distinct. The total vertex irregularity strength of G, denoted by tvsG is the minimum value of the largest label k over all such irregular assignment. In this paper, we consider the total vertex irregularity strengths of disjoint union of s isomorphic sun graphs, tvssMn , disjoint union of s consecutive nonisomorphic sun graphs, tvs si1 Mi2 , and disjoint union of any two nonisomorphic sun graphs tvsMk ∪ Mn . 1. Introduction Let G be a finite, simple, and undirected graph with vertex set V and edge set E. A vertex irregular total k-labeling on a graph G is an assignment of integer labels {1, 2, . . . , k} to both vertices and edges such that the weights calculated at vertices are distinct. The weight of a vertex v ∈ V in G is defined as the sum of the label of v and the labels of all the edges incident with v, that is, wtv λv uv∈E λuv. 1.1 The notion of the vertex irregular total k-labeling was introduced by Bača et al. 1. The total vertex irregularity strength of G, denoted by tvsG, is the minimum value of the largest label k over all such irregular assignments. 2 International Journal of Combinatorics The total vertex irregular strengths for various classes of graphs have been determined. For instances, Bača et al. 1 proved that if a tree T with n pendant vertices and no vertices of degree 2, then n 1/2 ≤ tvsT ≤ n. Additionally, they gave a lower bound and an upper bound on total vertex irregular strength for any graph G with v vertices and e edges, minimum degree δ and maximum degree Δ, |V | δ/Δ 1 ≤ tvsG ≤ |V | Δ − 2δ 1. In the same paper, they gave the total vertex irregular strengths of cycles, stars, and complete graphs, that is, tvsCn n 2/3, tvsK1,n n 1/2 and tvsKn 2. Furthermore, the total vertex irregularity strength of complete bipartite graphs Km,n for some m and n had been found by Wijaya et al. 2, namely, tvsK2,n n 2/3 for n > 3, tvsKn,n 3 for n ≥ 3, tvsKn,n1 3 for n ≥ 3, tvsKn,n2 3 for n ≥ 4, and tvsKn,an na 1/n 1 for all n and a > 1. Besides, they gave the lower bound on tvsKm,n for m < n, that is, tvsKm,n ≥ max{m n/m 1, 2m n − 1/n}. Wijaya and Slamin 3 found the values of total vertex irregularity strength of wheels Wn , fans Fn , suns Mn and friendship graphs fn by showing that tvsWn n 3/4, tvsFn n 2/4, tvsMn n 1/2, tvsfn 2n 2/3. Ahmad et al. 4 had determined total vertex irregularity strength of Halin graph. Whereas the total vertex irregularity strength of trees, several types of trees and disjoint union of t copies of path had been determined by Nurdin et al. 5–7. Ahmad and Bača 8 investigated the total vertex irregularity strength of Jahangir graphs Jn,2 and proved that tvsJn,2 n 1/2, for n ≥ 4 and conjectured that for n ≥ 3 and m ≥ 3, tvsJm,n ≥ max nm 2 nm − 1 2 , . 3 4 1.2 They also proved that for the circulant graph, tvsCn 1, 2 n 4/5, and conjectured that for the circulant graph Cn a1 , a2 , . . . , am with degree at least 5, 1 ≤ ai ≤ n/2, tvsCn a1 , a2 , . . . , am n r/1 r. A sun graph Mn is defined as the graph obtained from a cycle Cn by adding a pendant edge to every vertex in the cycle. In this paper, we determine the total vertex irregularity strength of disjoint union of the isomorphic sun graphs tvssMn , disjoint union of consecutive nonisomorphic sun graphs tvs si1 Mi2 and disjoint union of two nonisomorphic sun graphs tvsMk ∪ Mn , as described in the following section. 2. Main Results We start this section with a lemma on the lower bound of total vertex irregularity strength of disjoint union of any sun graphs as follows. Lemma 2.1. The total vertex irregularity strength of disjoint union of any sun graphs is tvs si1 Mni ≥ si1 ni 1/2, for s ≥ 1, ni1 ≥ ni , and 1 ≤ i ≤ s. Proof. The disjoint union of the isomorphic sun graphs si1 Mni has si1 ni vertices ui,j of s degree 1 and i1 ni vertices vi,j of degree 3. Note that the smallest weight of vertices of s follows that the largest weight of si1 ni vertices of degree 1 is at least i1 Mni must be 2. It si1 ni 1 and of si1 ni vertices of degree 3 is at least 2 si1 ni 1. As a consequence, at least one vertex ui,j or one edge incident with ui,j has label at least si1 ni 1/2. International Journal of Combinatorics 3 Moreover, at least one vertex vi,j or one edge incident with vi,j has label at least 2 si1 ni 1/4. Then tvs s i1 Mni s ≥ max i1 s ni 1 2 i1 ni 1 , . 2 4 2.1 Because of s i1 s ni 1 2 i1 ni 1 , 2 4 2.2 then s s i1 ni 1 tvs Mni ≥ . 2 i1 2.3 We now present a theorem on the total vertex irregularity strength of disjoint union of the isomorphic sun graphs tvssMn as follows. Theorem 2.2. The total vertex irregularity strength of the disjoint union of isomorphic sun graphs is tvssMn sn 1/2, for s ≥ 1 and n ≥ 3. Proof. Using Lemma 2.1, we have tvssMn ≥ sn 1/2. To show that tvssMn ≤ sn 1/2, we label the vertices and edges of sMn as a total vertex irregular labeling. Suppose the disjoint union of the isomorphic sun graphs sMn has the set of vertices V sMn ui,j | 1 ≤ i ≤ s, 1 ≤ j ≤ n ∪ vi,j | 1 ≤ i ≤ s, 1 ≤ j ≤ n 2.4 and the set of edges EsMn ui,j vi,j | 1 ≤ i ≤ s, 1 ≤ j ≤ n ∪ vi,j vi,j1 | 1 ≤ i ≤ s, 1 ≤ j ≤ n . The labels of the edges and the vertices of sMn are described in the following formulas: λ ui,j ⎧ ⎪ ⎪ 1 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ 1 j i − 1n ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ sn 1 ⎪ ⎩− 2 s−1 ; j 1, 2, . . . , n 2 s1 sn 1 s−1 and i , j 1, 2, . . . , −n 2 2 2 for i 1, 2, . . . , for other i, j, 2.5 4 λ vi,j ⎧ ⎪ ⎪ 1 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ 1 j i − 1n ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ sn 1 ⎪ ⎩− 2 ⎧ ⎪ ⎪ j i − 1n ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ λ ui,j vi,j ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ sn 1 ⎪ ⎪ ⎩ 2 International Journal of Combinatorics s−1 for i 1, 2, . . . , ; j 1, 2, . . . , n 2 s1 sn 1 s−1 and i , j 1, 2, . . . , −n 2 2 2 for other i, j, s−1 ; j 1, 2, . . . , n 2 s1 sn 1 s−1 and i , j 1, 2, . . . , −n 2 2 2 for i 1, 2, . . . , for other i, j, sn 1 , λ vi,j vi,j1 2 for i 1, 2, . . . , s, j 1, 2, . . . , n. 2.6 The weights of the vertices ui,j and vi,j of sMn are wt ui,j 1 j i − 1n, for i 1, 2, . . . , s, j 1, 2, . . . , n, sn 1 , wt vi,j 1 j i − 1n 2 2 2.7 for i 1, 2, . . . , s, j 1, 2, . . . , n. It is easy to see that the weights calculated at vertices are distinct. So, the labeling is vertex irregular total. Therefore tvssMn sn 1/2 for s ≥ 1 and n ≥ 3. Figure 1 illustrates the total vertex irregular labeling of the disjoint union 5 copies sun graphs M5 . If we substitute s 1 into the theorem above, we obtain a result that has been proved by Wijaya and Slamin 3 as follows. Corollary 2.3. The total vertex irregularity strength of sun graph tvsMn n 1/2, for s 1 and n ≥ 3. The following theorem shows the total vertex irregularity strength of disjoint union of nonisomorphic sun graphs with consecutive number of pendants. Theorem 2.4. The total vertex irregularity strength of disjoint union of consecutive nonisomorphic sun graphs is tvs si1 Mi2 ss 5/4, for s ≥ 1. Proof. Using Lemma 2.1, we have tvs si1 Mi2 ≥ ss 5 2/4. To show that s tvs i1 Mi2 ≤ ss 5 2/4, we label the vertices and edges of si1 Mi2 as a total International Journal of Combinatorics 5 ∗1 2 1 28 1 13 13 3 1 1 6 5 13 13 1 1 31 13 30 4 3 5 1 ∗1 2 1 29 32 1 4 1 ∗1 12 7 11 6 13 33 1 13 13 1 11 8 1 10 37 1 13 13 1 13 9 40 13 ∗9 15 2 9 1 17 14 1 22 13 13 13 13 13 8 ∗4 43 4 1 2 41 35 13 12 13 1 1 10 1 1 39 42 3 13 13 36 13 3 16 7 1 34 38 1 13 13 48 9 13 23 10 18 5 13 26 8 21 13 5 44 47 8 13 13 13 20 7 13 13 10 49 52 13 13 45 13 13 13 19 6 13 13 12 51 6 7 46 13 25 12 11 50 13 24 11 Figure 1: Vertex irregular total 13 labelings of 5M5 . vertex irregular labeling. Suppose the disjoint union of the nonisomorphic sun graphs with consecutive number of pendants si1 Mi2 has the set of vertices V ∪si1 Mi2 {u1,1 , u1,2 , u1,3 , u2,1 , u2,2 , u2,3 , u2,4 , . . . , us,1 , us,2 , . . . , us,s2 , v1,1 , v1,2 , v1,3 , v2,1 , v2,2 , v2,3 , v2,4 , . . . , vs,1 , vs,2 . . . , vs,s2 } 2.8 6 International Journal of Combinatorics and the set of edges E s Mi2 {u1,1 v1,1 , . . . , u1,3 v1,3 , u2,1 v2,1 , . . . , u2,4 v2,4 , . . . , us,1vs,1 , us,2 vs,2 , . . . , us,s2 vs,s2 } i1 ∪ {v1,1 v1,2 , . . . , v1,3 v1,1 , v2,1 v2,2 , . . . , v2,4 v2,1 , . . . , vs,1 vs,2 , . . . , vs,s2 vs,1 }. 2.9 The labels of the edges and the vertices of λ ui,j ⎧ ⎪ ⎪ 1 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ s i1 Mi2 are described in the following formulas: 2s for i 1, 2, . . . , − 1 , j 1, 2, . . . , i 2, 3 2s ; i 3 ss 5 2 2s/3 − 12s/3 4 j 1, 2, . . . , − 4 2 ⎪ ⎪ ⎪ ⎪ i2 3i − 4 ⎪ ⎪ ⎪ 1j ⎪ ⎪ 2 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ss 5 2 ⎪ ⎪ for other i, j, ⎩− 4 ⎧ 2s ⎪ ⎪ − 1 , j 1, 2, . . . , i 2, 1 for i 1, 2, . . . , ⎪ ⎪ ⎪ 3 ⎪ ⎪ ⎪ ⎪ ⎪ 2s ⎪ ⎪ ; i ⎪ ⎪ 3 ⎪ ⎪ ⎪ ⎪ ss 5 2 2s/3 − 12s/3 4 ⎨ j 1, 2, . . . , − λ vi,j 4 2 ⎪ ⎪ ⎪ 2 ⎪ 3i − 4 i ⎪ ⎪ ⎪ 1j ⎪ ⎪ 2 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ss 5 2 ⎪ ⎪ for other i, j, ⎩− 4 ⎧ 2 i 3i − 4 2s ⎪ ⎪ ⎪ j for i 1, 2, . . . , − 1 , j 1, 2, . . . , i 2, ⎪ ⎪ 2 3 ⎪ ⎪ ⎪ ⎪ 2s ⎪ ⎪ ⎪ i ; ⎨ 3 λ ui,j vi,j ⎪ ss 5 2 2s/3 − 12s/3 4 ⎪ ⎪ − j 1, 2, . . . , ⎪ ⎪ ⎪ 4 2 ⎪ ⎪ ⎪ ⎪ ⎪ ss 5 2 ⎪ ⎩ for other i, j, 4 ss 5 2 , for i 1, 2, . . . , s, j 1, 2, . . . , i 2. λ vi,j vi,j1 4 2.10 International Journal of Combinatorics 7 ∗1 ∗1 2 1 6 5 1 4 25 1 22 1 10 24 1 4 1 28 1 23 7 2 ∗1 1 9 10 3 13 1 10 27 6 7 1 i=2 ∗4 5 14 15 10 10 8 29 1 10 8 3 1 i=1 1 5 26 1 10 10 10 3 10 10 10 34 4 10 35 5 10 10 1 10 9 19 10 2 32 10 1 10 10 31 18 8 11 i=3 8 38 10 10 10 12 6 36 10 39 9 10 10 2 9 1 30 33 3 1 16 6 10 7 37 10 i=4 17 7 Figure 2: Vertex irregular total 10 labelings of M3 ∪ M4 ∪ M5 ∪ M6 . The weights of the vertices ui,j and vi,j of s i1 Mi2 are i2 3i 2j − 2 wt ui,j , for i 1, 2, . . . , s, j 1, 2, . . . , i 2, 2 i2 3i 2j − 2 ss 5 2 wt vi,j 2 for i 1, 2, . . . , s, j 1, 2, . . . , i 2. 2 4 2.11 It is easy to see that the weights calculated at vertices are distinct. So, the labeling is vertex irregular total. Therefore tvs si1 Mi2 ss 5 2/4 for s ≥ 1 dan n ≥ 3. Figure 2 illustrates the vertex irregular total 10 labelings of the disjoint union 4 consecutive nonisomorphic sun graphs M3 ∪ M4 ∪ M5 ∪ M6 . Finally, we conclude this section with a result on the total vertex irregularity strength of disjoint union of two nonisomorphic sun graphs as follows. Theorem 2.5. The total vertex irregularity strength of disjoint union of two nonisomorphic sun graphs is tvsMk ∪ Mn k n 1/2, for n > k ≥ 3. 8 International Journal of Combinatorics ∗1 ∗1 1 3 2 1 5 1 5 11 6 6 2 20 6 4 22 3 i=1 19 1 23 5 1 16 6 6 6 6 4 18 1 15 1 6 1 17 7 6 5 2 6 14 1 1 6 4 1 6 8 2 6 3 21 6 6 10 4 6 i=2 9 3 Figure 3: Vertex irregular total 6 labelings of M4 ∪ M6 . Proof. Using Lemma 2.1, we have tvs si1 Mi2 ≥ kn1/2. To show that tvsMk ∪Mn ≤ kn1/2, we label the vertices and edges of Mk ∪Mn as a vertex irregular total k-labeling. Suppose the disjoint union of the nonisomorphic sun graphs with different pendant Mk ∪Mn has the set of vertices V sMn {u1,1 , u1,2 , . . . , u1,n , u2,1 , u2,2 , . . . , u2,n , v1,1 , v1,2 , . . . , v1,n , v2,1 , v2,2 , . . . , v2,n } 2.12 and the set of edges EsMn {u1,1 v1,1 , u1,2 v1,2 , . . . , u1,n v1,n , u2,1 v2,1 , u2,2 v2,2 , . . . , u2,n v2,n } ∪ {v1,1 v1,2 , v1,2 v1,3 , . . . , v1,n v1,1 , v2,1 v2,2 , v2,2 v2,3 , . . . , v2,n v2,1 }. 2.13 The labels of the edges and the vertices of Mk ∪ Mn are described in the following formulas: λ ui,j λ vi,j ⎧ 1 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ for i 1; j 1, 2, . . . , k, kn1 −1 i 2; j 1, 2, . . . , 2 ⎪ ⎪ 1 j i − 1k ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ k n 1 for other i, j, 2 ⎧ 1 for i 1; j 1, 2, . . . , k, ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ kn1 ⎪ ⎪ ⎪ − 1 i 2; j 1, 2, . . . , ⎨ 2 ⎪ ⎪ 1 j i − 1k ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ k n 1 2 for other i, j, International Journal of Combinatorics λ ui,j vi,j ⎧ ⎪ j i − 1k ⎪ ⎪ ⎪ ⎪ ⎨ 9 for i 1; j 1, 2, . . . , k, kn1 −1 i 2; j 1, 2, . . . , 2 ⎪ ⎪ ⎪ ⎪ kn1 ⎪ ⎩ for other i, j, 2 kn1 λ vi,j vi,j1 , for i 1; j 1, 2, . . . , k, i 2; j 1, 2, . . . , n. 2 2.14 The weights of the vertices ui,j and vi,j of Mk ∪ Mn are wt ui,j 1 j i − 1k, for i 1, 2, j 1, 2, . . . , n, kn1 wt vi,j 1 j i − 1k 2 , for i 1, 2, j 1, 2, . . . , n. 2 2.15 It is easy to see that the weights calculated at vertices are distinct. So, the labeling is vertex irregular total. Therefore tvsMk ∪ Mn k n 1/2 for n > k ≥ 3. Figure 3 illustrates the vertex irregular total 6 labelings of the disjoint union of 2 nonisomorphic sun graphs M4 ∪ M6 . 3. Conclusion We conclude this paper with the following conjecture for the direction of further research in this area. Conjecture 1. The total vertex irregularity strength of disjoint union of any sun graphs is tvs si1 Mni si1 ni 1/2, for s ≥ 1, ni1 ≥ ni and 1 ≤ i ≤ s. References 1 M. Bača, S. Jendrol’, M. Miller, and J. Ryan, “On irregular total labellings,” Discrete Mathematics, vol. 307, no. 11-12, pp. 1378–1388, 2007. 2 K. Wijaya, Slamin, Surahmat, and S. Jendrol’, “Total vertex irregular labeling of complete bipartite graphs,” Journal of Combinatorial Mathematics and Combinatorial Computing, vol. 55, pp. 129–136, 2005. 3 K. Wijaya and Slamin, “Total vertex irregular labelings of wheels, fans, suns and friendship graphs,” Journal of Combinatorial Mathematics and Combinatorial Computing, vol. 65, pp. 103–112, 2008. 4 A. Ahmad, Nurdin, and E. T. Baskoro, “On total irregularitystrength of generalized Halin graph,” to appear in Ars Combinatoria. 5 Nurdin, E. T. Baskoro, A. N. M. Salman, and N. N. Gaos, “On total vertex-irregular labellings for several types of trees,” Utilitas Mathematica, vol. 83, pp. 277–290, 2010. 6 Nurdin, E. T. Baskoro, A. N. M. Salman, and N. N. Gaos, “On the total vertex irregularity strength of trees,” Discrete Mathematics, vol. 310, no. 21, pp. 3043–3048, 2010. 7 Nurdin, A. N. M. Salman, N. N. Gaos, and E. T. Baskoro, “On the total vertex-irregular strength of a disjoint union of t copies of a path,” Journal of Combinatorial Mathematics and Combinatorial Computing, vol. 71, pp. 227–233, 2009. 8 A. Ahmad and M. Bača, “On vertex irregular total labelings,” to appear in Ars Combinatoria. Advances in Decision Sciences Advances in Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com Volume 2013 The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com Volume 2013 International Journal of Mathematical Problems in Engineering Hindawi Publishing Corporation http://www.hindawi.com Volume 2013 Combinatorics Hindawi Publishing Corporation http://www.hindawi.com Volume 2013 Hindawi Publishing Corporation http://www.hindawi.com Volume 2013 Abstract and Applied Analysis International Journal of Stochastic Analysis Hindawi Publishing Corporation http://www.hindawi.com Hindawi Publishing Corporation http://www.hindawi.com Volume 2013 Volume 2013 Discrete Dynamics in Nature and Society Submit your manuscripts at http://www.hindawi.com Journal of Function Spaces and Applications Hindawi Publishing Corporation http://www.hindawi.com Hindawi Publishing Corporation http://www.hindawi.com Volume 2013 Journal of Applied Mathematics Advances in International Journal of Mathematics and Mathematical Sciences Journal of Operations Research Volume 2013 Probability and Statistics International Journal of Differential Equations Hindawi Publishing Corporation http://www.hindawi.com Volume 2013 ISRN Mathematical Analysis Hindawi Publishing Corporation http://www.hindawi.com Hindawi Publishing Corporation http://www.hindawi.com Volume 2013 ISRN Discrete Mathematics Volume 2013 Hindawi Publishing Corporation http://www.hindawi.com Hindawi Publishing Corporation http://www.hindawi.com Volume 2013 Hindawi Publishing Corporation http://www.hindawi.com Volume 2013 Hindawi Publishing Corporation http://www.hindawi.com Hindawi Publishing Corporation http://www.hindawi.com Volume 2013 ISRN Applied Mathematics ISRN Algebra Volume 2013 Hindawi Publishing Corporation http://www.hindawi.com Volume 2013 ISRN Geometry Volume 2013 Hindawi Publishing Corporation http://www.hindawi.com Volume 2013
© Copyright 2025 Paperzz