100 Math 171-01:Quiz #1 (5.1, 5.3, 5.4) Name: Show as much work as possible to get full credit. 1. Use the graph of y f x shown below to find the exact value of the definite integrals. (a) f xdx 6 0 (b) (4 points each) = 4(5) – ½(2)(4+2) = 20 - 6 = 14 f xdx 12 4 = -½(4)(4) + ½(π)(22) = 2π - 8 (c) f xdx 12 5 = -½(3)(3) + ½(π)(22) = 2π – 4.5 2. Find each of the following definite integrals by using the geometric definition of integrals. That is, do not use the Fundamental Theorem of Calculus. Show some work. (6 points each) (a) 6 x 2 dx 1 ½(1)(1) + ½(4)(4) = 8.5 (b) 4 16 x 2 dx 4 -½(π)(42) = -8π (c) 2 0 sin xdx = 0 because the “areas” cancel each other out 3. Suppose we know that f xdx 8, f xdx 2, and f xdx 3. 4 4 6 0 2 4 (6 points each) 3 3 f x 5dx 2 0 f xdx f xdx 4 4 2 0 2 0 38 2 52 0 Find 3f x 5dx . 2 0 5dx 18 10 8 4. Consider the function Fx f tdt where f is the function shown below. x (5 points each) 0 (a) Over what intervals in [0, 10] is F decreasing? [5, 8] QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. (b) Over what intervals in [0, 10] is F concave up? [1, 3] [6, 10] 5. Find the exact value of the following using the Fundamental Theorem of Calculus. (a) x 3 1 2 4 x 2 dx x 1 3 3 2x 2 2x (b) cos2x dx 4 6 12 sin 2x 3 1 6 103 12 1 12 1 3 4 18 6 2 2 27 3 (7 points each) 12 sin3 1 sin 2 2 2 3 4 3 2 6. Find each of the following integrals. Give exact answers for definite integrals. (a) e sinln x x 1 1 0 (8 points each) Let u ln x du 1x dx dx 1 sin udu cos u cos1 cos0 0 1 cos1 (b) x4 1 x 2 dx 1 x x 2 dx 12 1 u 1 x 4 Let u 1 x 2 dx 2 du 4 arctanx C 12 ln 1 x 2 4 arctanx C (c) csc 2 x cot x dx Let u cot x du csc2 xdx (d) 3 23 cot x 2 C 3 x dx x4 u4 du u 23 u 2 C udu Let u x 4 du dx and x u 4 u 1 2 4u 12 du 23 u 2 8u 2 C 3 2 3 1 x 4 3 2 8 x 4 C (e) x 3sin x 3 12 u du 3 2 6x cos x 2 6x dx 18 u 4 C C 18 sin 4 x 2 6x Let u sin x 2 6x 12 du x 3cos x 2 6x
© Copyright 2026 Paperzz