Economics 203A Homework # 6 Anton Cheremukhin November 13, 2005 Exercise 1 Let Yn be a statistic such that limn→∞ E [Yn ] = θ and limn→∞ σY2n = 0. Prove that Yn £ ¤ is a consistent estimator of θ. Hint: E (Yn − θ)2 = (E [Yn − θ])2 + σY2n . Why? E [(Yn −θ)2 ] E [(Yn −E[Yn ]+E[Yn ]−θ)2 ] = = Proof. Pr [|Yn − θ| ≥ ε] ≤ 2 ε ε2 2 +(E[Y −θ])2 2 E [(Yn −E[Yn ])2 ] σ n + (E[Ynε2]−θ) + 2E[Yn −E[Yεn2]](E[Yn ]−θ) = Yn ε2 ε2 σ2 +(E[Yn −θ])2 ε2 limn→∞ Pr [|Yn − θ| ≥ ε] ≤ limn→∞ Yn i.e Yn is a consistent estimator of θ. =0 ⇒ p limn→∞ Yn = θ Exercise 2 Let X1 , . . . , Xn represent a random sample from the pdf f (x) = (1/θ) exp (−x/θ), 0 < x < ∞, zero elsewhere. Find the MLE θb of θ. Also, find the MLE of Pr (X ≤ 2) ´ ³ Pn ¡ ¢ Q Q xi → max Proof. L(xi , θ) = i f (xi , θ) = ni=1 1θ exp − xθi = θ−n exp − i=1 θ θ ´ ´ Pn ³ Pn ³ Pn −1−n −n i=1 xi i=1 xi i=1 xi + θ exp − θ FOC: −nθ exp − θ =0 θ2 P n θ̂ = n1 i=1 xi = x̄ ¡ ¢ R 2θ R2 Pr (X ≤ 2) = 0 exp − xθ d xθ = 0 exp (−x) dx = 1 − e−2θ MLE of Pr (X ≤ 2) is equal to 1 − e−2θ̂ due to invariance principle. ¸ ∙ £ ¤ 1 1 1 1 1 0 , y 0 = 14 17 8 16 3 , Exercise 3 Let X = 2 4 3 5 2 Calculate the following: (a) X 0 X (b) det (X 0 X) −1 0 (c) (X X) (d) (X 0 X)−1 X 0 (e) (X 0 X)¡−1 X 0 y (f) X (X 0 X)−1 X 0 ¢ −1 (g) trace X (X 0 X) X 0 (h) I − X (X 0 X)−1 X 0 ¡ ¢ ¡ ¢ (i) trace I − X (X 0 X)−1 X 0 (j) I − X (X 0 X)−1 X 0 y 0 Proof. X X = ∙ ¸⎢ ⎢ ⎢ ⎢ ⎣ 1 1 1 1 1 2 4 3 5 2 ⎤ ⎥ ∙ ¸ ⎥ ⎥ = 5 16 ⎥ 16 58 ⎦ ¸ 5 16 det (X X) = det = 34 16 58 ¸ ∙ ¸−1 ∙ 29 8 5 16 − 17 −1 0 17 = (X X) = 8 5 16 58 ¸ ∙ 13 ¸ ∙− 17 34 ¸ ∙ 29 8 3 11 5 13 1 1 1 1 1 − − − −1 0 0 17 17 17 17 17 17 17 = (X X) X = 8 3 1 3 5 2 9 2 4 3 5 2 − 17 − 17 − 34 − 17 34 17 34 0 ∙ 1 1 1 1 1 2 4 3 5 2 ⎡ 1 0 −1 (X X) 0 Xy= ∙ 13 17 3 − 17 3 − 17 2 17 5 17 1 − 34 − 11 17 9 34 13 17 3 − 17 ⎡ ¸⎢ ⎢ ⎢ ⎢ ⎣ 14 17 8 16 3 ⎤ ⎥ ∙ ¸ ⎥ ⎥= 2 ⎥ 3 ⎦ ⎤ ⎡ 7 1 4 1 2 17 17 17 1 5 3 ⎢ 1 4 ⎥ ∙ 13 ¸ ⎢ 3 11 5 13 17 17 17 ⎥ ⎢ ⎢ − − 4 3 7 17 17 17 17 17 ⎥ X (X 0 X)−1 X 0 = ⎢ =⎢ 1 3 2 9 34 ⎢ 172 17 ⎢ 1 3 ⎥ −3 − − 7 5 17 17 34 34 17 ⎣ − ⎣ 1 5 ⎦ 17 17 34 7 1 4 1 2 17 17 17 ¡ ¢ trace X (X 0 X)−1 X 0 = 2⎡ ⎤ ⎡ 10 7 2 1 4 1 4 7 − 17 − 17 − 17 17 17 17 17 17 3 5 3 7 1 12 ⎢ 1 ⎥ ⎢ −1 − 17 17 17 17 17 17 ⎥ 17 17 ⎢ ⎢ −1 4 3 4 3 7 5 4 27 ⎥=⎢ − I − X (X 0 X) X 0 = I − ⎢ 34 34 17 ⎥ ⎢ 17 − 17 34 ⎢ 172 17 7 5 23 2 ⎣ − ⎦ ⎣ 2 −7 −5 − 17 17 34 34 17 17 17 34 7 2 7 1 4 1 4 7 − − − − 17 17 17 17 17 17 17 17 ¡ ¢ −1 trace I − X (X 0 X) X 0 ⎡= −1 ⎤ ⎤ ⎡ ⎤⎡ 10 1 4 7 2 6 14 − − − 17 17 17 17 17 3 7 1 ⎥⎢ 12 ⎥ ⎢ ⎢ −1 17 ⎥ − − − 17 17 17 17 17 ⎥ ⎢ ⎥ ⎢ 3 ⎥ ⎢ ¡ ¢ −1 4 3 5 4 ⎥⎢ 27 0 0 ⎢ ⎥ ⎢ I − X (X X) X y = ⎢ − 17 − 17 34 − 34 − 17 ⎥ ⎢ 8 ⎥ = ⎢ −3 ⎥ ⎥ 11 2 ⎣ 2 −7 −5 ⎦ ⎣ 16 ⎦ ⎣ −1 ⎦ 17 17 34 34 17 2 10 7 1 4 −5 3 − 17 − 17 − 17 17 17 ⎡ 2 − 17 7 17 5 34 23 34 2 − 17 2 17 7 − 17 5 − 34 11 34 2 17 7 17 1 17 4 17 2 − 17 7 17 7 − 17 1 − 17 4 − 17 2 17 10 17 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ Exercise 4 Consider the classical regression model y = X β + ε where ε ∼ N (0, σ 2 I) n×k (a) Let P = X (X 0 X)−1 X 0 . Show that P = P 0 and P P = P (b) Let M = I − P . Show that M 0 = M, MM = M, and trace (M) = n − k b where βb = (X 0 X)−1 X 0 y. Show that e = Mε (c) Let e = y − X β, (d) Show that βb = β + (X 0 X)−1 X 0 ε. ¢ ¡ (e) Show that βb ∼ N β, σ 2 (X 0 X)−1 (f) Show that βb is independent of e ³ ´. q 2 0 b s2 (X 0 X)−1 ∼ t (n − k). (g) Let s = e e/ (n − k). Show that β − β ¶ µ q q −1 −1 (h) Assume that k = 1. Show that the interval βb − 1.96 σ 2 (X 0 X) , βb + 1.96 σ 2 (X 0 X) ¶ µ q q −1 b −1 2 0 2 0 b contains β with 95% probability. Show that the interval β − 2.576 σ (X X) , β + 2.576 σ (X X) contains β with 99% probability. (i) Assume that n = 30 and k = 1. Also assume that σ 2 is unknown. Finally assume that s2 = 1 and X 0 X = 25. Construct a 95% confidence interval for β. Proof. P 0 = (X (X 0 X)−1 X 0 )0 = (X 0 )0 ((X 0 X)−1 )0 X 0 = X (X 0 (X 0 )0 )−1 X 0 = P P P = X (X 0 X)−1 X 0 X (X 0 X)−1 X 0 = X (X 0 X)−1 X 0 = P M 0 = (I − P )0 = I − P 0 = I − P = M MM = (I − P )(I − P ) = I − 2P + P P = I − P = M trace (M) = trace (I − P ) = trace (I) − trace (P ) = n − k 2 MX = (I − P )X = (X − X (X 0 X)−1 X 0 X) = X − X = 0 e = y − X (X 0 X)−1 X 0 y = (I − P )y = My = M(Xβ + ε) = Mε βb = (X 0 X)−1 X 0 y = (X 0 X)−1 X 0 (Xβ + ε) = β + (X 0 X)−1 X 0 ε ¡ ¢ ¡ ¢ ⇒ βb ∼ N β, σ 2 (X 0 X)−1 X 0 X (X 0 X)−1 = N β, σ 2 (X 0 X)−1 ε ∼ N (0, σ 2 I) e = Mε ∼ N (0, σ 2 MM 0 ) = N (0, σ 2 MM) = N (0, σ 2 M) Hence, e and βb have joint normal distribution. E[(X 0 X)−1 X 0 ε · (Mε)0 ] = σ 2 (X 0 X)−1 X 0 M 0 = σ 2 (X 0 X)−1 (MX)0 = 0 Hence, they are independent. 2 b s2 /σ 2 = e0 e/(σ (n − k)) ∼ χ2 (n − k) is independent of β. ³ ´. q βb − β σ 2 (X 0 X)−1 ∼ N (0, I) ³ ´. q b Hence, β − β s2 (X 0 X)−1 ∼ t (n − k) ¸ ∙ q q −1 −1 = Pr βb − 1.96 σ 2 (X 0 X) < β < βb + 1.96 σ 2 (X 0 X) ¯ ¸ ∙¯ ³ q ´. ¯ ¯ σ 2 (X 0 X)−1 ¯¯ < 1.96 = 0.95 Pr ¯¯ βb − β ∙ ¸ q q −1 −1 Pr βb − 2.576 σ 2 (X 0 X) < β < βb + 2.576 σ 2 (X 0 X) = ¯ ¸ ∙¯ ³ q ´. ¯ ¯ Pr ¯¯ βb − β σ 2 (X 0 X)−1 ¯¯ < 2.576 = 0.99 ³ ´. p ³ ´ βb − β 1/25 = 5 βb − β ∼ t (n − k) t0.05h(29) = 2.045231 ⇒ i Pr βb − 0.409 < β < βb + 0.409 = 0.95 Exercise 5 Consider the classical regression model y = X β +ε where E [ε] = 0 and E [εε0 ] = σ 2 In . n×k Notice that we are not assuming that ε has a normal distribution here. (a) Show that βb = (X 0 X)−1 X 0 y is an unbiased estimator for β. (b) Show that s2 = e0 e/ (n − k) is an unbiased estimator for σ 2 . −1 0 0 b Proof. h i β = β + (X£ X) X ε ¤ E βb = E [β] + E (X 0 X)−1 X 0 ε = β + (X 0 X)−1 X 0 E [ε] = β e = Mε e0 e = ε0 M 0 Mε = ε0 MMε = ε0 Mε (see previous exercise) ε0 Mε = trace (ε0 Mε) because it is an 1x1 scalar. trace (ε0 Mε) = trace (Mεε0 ) by the properties of trace E [e0 e] = E [ε0 Mε] = E [trace (ε0 Mε)] = E [trace (Mεε0 )] = trace (ME [εε0 ]) = trace (MIn ) = σ 2 trace (M) = σ2 (n − k) Hence E[s2 ] = E[e0 e/ (n − k)] = σ 2 ⇒ s2 is an unbiased estimator of σ 2 . ¡ ¢ .³ σ ´ √ ∼ N (0, 1), Exercise 6 Suppose that U1 , . . . , Un are i.i.d. N (µ, σ 2 ). Show that U − µ n i h based on which show that Pr U − 1.96 √σn < µ < U + 1.96 √σn = 95% and h i Pr U − 2.576 √σn < µ < U + 2.576 √σn = 99% 3 Proof. Ui ∼ iid N (µ, σ 2 ) (U − µ)/σh∼ N (0, 1/n) ⇒ ⇒ ¢ ∼ iid (0, 1) √ (U¡i − µ)/σ ⇒ n Ui − µ /σ ∼ N (0, 1) £√ ¡ ¢ ¤ σ Hence, Pr U − 1.96 √n < µ < U + 1.96 √σn = Pr | n U − µ /σ| < 1.96 = 95% i h £√ ¡ ¢ ¤ Pr U − 2.576 √σn < µ < U + 2.576 √σn = Pr | n U − µ /σ| < 2.576 = 99% Exercise 7 Let the observed value of the sample mean X of a random sample of size 20 from N (µ, 80) be 81.2. Find a 95% confidence interval for µ √ Proof. CI(µ) = (81.2 ± 1.96 √80 ) = (77. 28, 85. 12) 20 Exercise mean of a random sample of size n from N (µ, 9). Find n such ¡ 8 Let X be the sample ¢ that Pr X − 1 < µ < X + 1 = .90 approximately. Proof. 1 = 1.645 √3n ⇒ n = (1.645 ∗ 3)2 ≈ 24 Exercise 9 Let a random sample of size 17 from N (µ, σ 2 ) yield x = 4.7 and s2 = 6.12. Determine a 95% confidence interval for µ. p Proof. CI(µ) = (4.7 ± 2.12 6.12/17) = (3. 428, 5. 972) Exercise 10 Let two independent random samples, each of size 10, from two normal distributions N (µ1 , 1) and N (µ2 , 1) yield x1 = 4.8, x2 = 5.6. Find a 95% confidence interval for µ1 − µ2 . √ Proof. CI(µ1 − µ2 ) = ((4.8 − 5.6) ± 1.96 0.1 + 0.1) = (−1. 676 5, 0.0765) Exercise 11 Let X n denote the mean of a random sample of size n from a gamma distribution ¢± p √ ¡ with parameters α = µ > 0 and β = 1. Show that the limiting distribution of n X n − µ Xn is N (0, 1) Proof. E[Xi ] = µ = V ar[Xi ] √ d by CLT n(X n − µ) −→ N(0, µ) p by LLN X n −→ µ ¢± p √ ¡ d bu Slutsky n X n − µ X n −→ N (0, 1) Exercise 12 Let X n and s2n represent, respectively, the mean√and¡ variance ¢± of a random sample of 2 size n from N (µ, σ ). Prove that the limiting distribution of n X n − µ sn is N (0, 1). √ d Proof. by CLT n(X n − µ) −→ N(0, σ 2 ) p by LLN s2n −→ σ 2 ¢± p √ ¡ d bu Slutsky n X n − µ s2n −→ N (0, 1) Exercise 13 Let x be the observed mean of a random sample ¢of size n from a distribution having ¡ σ 2 mean µ and known variance σ . Find n so that x − 4 , x + σ4 is an approximate 95% confidence interval for µ. √ d Proof. by √ CLT n(x − µ) −→ N(0, σ 2 ) Hence, Pr[| n(x − µ)|/σ ≤ 1.96] = 0.95 That means Pr[x − 1.96 √σn ≤ µ ≤ x + 1.96 √σn ] = 0.95 1 √ ≈ 1.96 ⇒ n ≈ (1.96 ∗ 4)2 ≈ 62 4 n 4
© Copyright 2026 Paperzz