This presentation shows how the tableau method is used to solve a simple linear programming problem in two variables: Maximising subject to three constraints. LINEAR PROGRAMMING Example 1 Maximise I = x + 0.8y subject to x + y 1000 2x + y 1500 3x + 2y 2400 y 960 800 640 480 Initial solution: 320 I = 0 at (0, 0) 160 x 0 0 160 320 480 640 800 960 LINEAR PROGRAMMING Maximise subject to Maximise where subject to I = x+ x+y 2x + y 3x + 2y Example 1 0.8y 1000 1500 2400 I I - x - 0.8y x + y + s1 2x + y + s2 3x + 2y + s3 = = = = 0 1000 1500 2400 SIMPLEX TABLEAU Initial solution Basic variable x y s1 s2 s3 RHS s1 1 1 1 0 0 1000 s2 2 1 0 1 0 1500 s3 3 2 0 0 1 2400 I -1 -0.8 0 0 0 0 I = 0, x = 0, y = 0, s1 = 1000, s2 = 1500, s3 = 2400 PIVOT 1 Choosing the pivot column Basic variable x y s1 s2 s3 RHS s1 1 1 1 0 0 1000 s2 2 1 0 1 0 1500 s3 3 2 0 0 1 2400 I -1 -0.8 0 0 0 0 Most negative number in objective row PIVOT 1 Choosing the pivot element Basic variable x y s1 s2 s3 RHS s1 1 1 1 0 0 1000 1000/1 s2 2 1 0 1 0 1500 1500/2 s3 3 2 0 0 1 2400 2400/3 I -1 -0.8 0 0 0 -values 0 Minimum of -values gives 2 as pivot element PIVOT 1 Making the pivot Basic variable x y s1 s2 s3 RHS s1 1 1 1 0 0 1000 s2 1 0.5 0 0.5 0 750 s3 3 2 0 0 1 2400 I -1 -0.8 0 0 0 0 Divide through the pivot row by the pivot element PIVOT 1 Making the pivot Basic variable x y s1 s2 s3 RHS s1 1 1 1 0 0 1000 s2 1 0.5 0 0.5 0 750 s3 3 2 0 0 1 2400 I 0 -0.3 0 0.5 0 750 Objective row + pivot row PIVOT 1 Making the pivot Basic variable x y s1 s2 s3 RHS s1 0 0.5 1 -0.5 0 250 s2 1 0.5 0 0.5 0 750 s3 3 2 0 0 1 2400 I 0 -0.3 0 0.5 0 750 First constraint row - pivot row PIVOT 1 Making the pivot Basic variable x y s1 s2 s3 RHS s1 0 0.5 1 -0.5 0 250 s2 1 0.5 0 0.5 0 750 s3 0 0.5 0 -1.5 1 150 I 0 -0.3 0 0.5 0 750 Third constraint row – 3 x pivot row PIVOT 1 New solution Basic variable x y s1 s2 s3 RHS s1 0 0.5 1 -0.5 0 250 x 1 0.5 0 0.5 0 750 s3 0 0.5 0 -1.5 1 150 I 0 -0.3 0 0.5 0 750 I = 750, x = 750, y = 0, s1 = 250, s2 = 0, s3 = 150 LINEAR PROGRAMMING Example Maximise I = x + 0.8y subject to x + y 1000 2x + y 1500 3x + 2y 2400 y 960 800 640 480 Solution after pivot 1: 320 I = 750 160 x 0 0 160 320 480 640 800 960 at (750, 0) PIVOT 2 Choosing the pivot column Basic variable x y s1 s2 s3 RHS s1 0 0.5 1 -0.5 0 250 x 1 0.5 0 0.5 0 750 s3 0 0.5 0 -1.5 1 150 I 0 -0.3 0 0.5 0 750 Most negative number in objective row PIVOT 2 Choosing the pivot element Basic variable x y s1 s2 s3 RHS s1 0 0.5 1 -0.5 0 250 250/0.5 x 1 0.5 0 0.5 0 750 750/0.5 s3 0 0.5 0 -1.5 1 150 150/0.5 I 0 -0.3 0 0.5 0 750 -values Minimum of -values gives 0.5 as pivot element PIVOT 2 Making the pivot Basic variable x y s1 s2 s3 RHS s1 0 0.5 1 -0.5 0 250 x 1 0.5 0 0.5 0 750 s3 0 1 0 -3 2 300 I 0 -0.3 0 0.5 0 750 Divide through the pivot row by the pivot element PIVOT 2 Making the pivot Basic variable x y s1 s2 s3 RHS s1 0 0.5 1 -0.5 0 250 x 1 0.5 0 0.5 0 750 s3 0 1 0 -3 2 300 I 0 0 0 -0.4 0.6 840 Objective row + 0.3 x pivot row PIVOT 2 Making the pivot Basic variable x y s1 s2 s3 RHS s1 0 0 1 1 -1 100 x 1 0.5 0 0.5 0 750 s3 0 1 0 -3 2 300 I 0 0 0 -0.4 0.6 840 First constraint row – 0.5 x pivot row PIVOT 2 Making the pivot Basic variable x y s1 s2 s3 RHS s1 0 0 1 1 -1 100 x 1 0 0 2 -1 600 s3 0 1 0 -3 2 300 I 0 0 0 -0.4 0.6 840 Second constraint row – 0.5 x pivot row PIVOT 2 New solution Basic variable x y s1 s2 s3 RHS s1 0 0 1 1 -1 100 x 1 0 0 2 -1 600 y 0 1 0 -3 2 300 I 0 0 0 -0.4 0.6 840 I = 840, x = 600, y = 300, s1 = 100, s2 = 0, s3 = 0 LINEAR PROGRAMMING Example Maximise I = x + 0.8y subject to x + y 1000 2x + y 1500 3x + 2y 2400 y 960 800 640 480 Solution after pivot 2: 320 I = 840 160 x 0 0 160 320 480 640 800 960 at (600, 300) PIVOT 3 Choosing the pivot column Basic variable x y s1 s2 s3 RHS s1 0 0 1 1 -1 100 x 1 0 0 2 -1 600 y 0 1 0 -3 2 300 I 0 0 0 -0.4 0.6 840 Most negative number in objective row PIVOT 3 Choosing the pivot element Basic variable x y s1 s2 s3 RHS -values s1 0 0 1 1 -1 100 100/1 x 1 0 0 2 -1 600 600/2 y 0 1 0 -3 2 300 I 0 0 0 -0.4 0.6 840 Minimum of -values gives 1 as pivot element PIVOT 3 Making the pivot Basic variable x y s1 s2 s3 RHS s1 0 0 1 1 -1 100 x 1 0 0 2 -1 600 y 0 1 0 -3 2 300 I 0 0 0 -0.4 0.6 840 Divide through the pivot row by the pivot element PIVOT 3 Making the pivot Basic variable x y s1 s2 s3 RHS s1 0 0 1 1 -1 100 x 1 0 0 2 -1 600 y 0 1 0 -3 2 300 I 0 0 0.4 0 0.2 880 Objective row + 0.4 x pivot row PIVOT 3 Making the pivot Basic variable x y s1 s2 s3 RHS s1 0 0 1 1 -1 100 x 1 0 -2 0 1 400 y 0 1 0 -3 2 300 I 0 0 0.4 0 0.2 880 Second constraint row – 2 x pivot row PIVOT 3 Making the pivot Basic variable x y s1 s2 s3 RHS s1 0 0 1 1 -1 100 x 1 0 -2 0 1 400 y 0 1 3 0 -1 600 I 0 0 0.4 0 0.2 880 Third constraint row + 3 x pivot row PIVOT 3 Optimal solution Basic variable x y s1 s2 s3 RHS s2 0 0 1 1 -1 100 x 1 0 -2 0 1 400 y 0 1 3 0 -1 600 I 0 0 0.4 0 0.2 880 I = 880, x = 400, y = 600, s1 = 0, s2 = 100, s3 = 0 LINEAR PROGRAMMING Example Maximise I = x + 0.8y subject to x + y 1000 2x + y 1500 3x + 2y 2400 y 960 800 640 Optimal solution after pivot 3: 480 320 I = 880 160 x 0 0 160 320 480 640 800 960 at (400, 600)
© Copyright 2026 Paperzz