Comparison of the autoregressive and autocovariance prediction results on different stationary time series Wiesław Kosek University of Agriculture in Krakow, Poland Abstract. The advantages and disadvantages of the autoregressive and autocovariance prediction methods are presented using different model time series similar to the observed geophysical ones, e.g. Earth orientation parameters or sea level anomalies data. In the Autocovariance prediction autocovariance prediction method the first predicted value is determined by the principle that the autocovariances estimated from the extended by the first prediction value series coincide as closely as possible with the autocovariances estimated from the given series. Autoregressive prediction In the autoregressive prediction method the autoregressive model is used to estimate the first prediction value which depends on the autoregressive order and coefficients computed from the autocovariance estimate. In both methods the autocovariance Results estimations of time series must be computed, thus application of them makes sense when these series are stationary. However, the autoregressive prediction is more suitable for less noisy data and can be applied to short time span series. The autocovariance Conclusions prediction is recommended for longer time series and but unlike autoregressive method can be applied to more noisy data. The autoregressive method can be applied for time series having close frequency oscillations while the autocovariance prediction is not suitable for such data. In case of the autocovariance prediction the problem of estimation of the appropriate forecast amplitude is also discussed. 1/2 European Geosciences Union General Assembly 2015, Vienna | Austria | 12 – 17 April 2015 Comparison of the autoregressive and autocovariance prediction results on different stationary time series Wiesław Kosek University of Agriculture in Krakow MODEL DATA 2 t zt Ai exp i (t ) nt i 1 Ti L t i (t ) nk k 1 Noise Autocovariance prediction standard deviations: 0, 3 Autoregressive prediction Periods Amplitudes Phases MODEL 1 L=3 M=100 20, 30, 50 All equal to 1.0 All equal to 0.0 MODEL 2 L=3 M=100 50, 57, 60 MODEL 3 L=9 M=100 10, 15, 20, 25, 40, 60, 90, 120, 180 All equal to 1.0 All equal to 0.0 standard deviations: 0, 1, 2, 3, 5 MODEL 4 L=1 M=1000 365.24 1.0 Random walk computed by integration of white nose with standard deviations equal to 1o,2o, 3o standard deviation: 0.1 MODEL 5 L=2 M=1000 365.24, 182.62 1.0, 0.5 Random walk computed by integration of white nose with standard deviations equal to 2o standard deviation: 0.03 MODEL 6 L=2 M=1000 365.24 433.00 Random walk computed by integration of white nose with standard deviations equal to 2o standard deviation: 0.0003 Ti Ai All equal to 1.0 0.08, 0.016 i (t ) All equal to 0.0 nt standard deviations: 0, 1, 2, 3 Results Conclusions 2/2 Autocovariance prediction zt , t 1, 2,..., n - complex-valued stationary time series with z n 1 ? nk 1 (n) cˆzz ( k ) zt zt k , n t 1 for nk 1 ( n 1) cˆzz (k ) zt zt k , n 1 t 1 nk R ( z n 1 ) cˆ k 1 (n) zz R ( z n 1 ) 0 z n 1 (k ) cˆ E[ zt ] 0 n - the number of data - prediction k 0,1,..., n 1 - biased autocovariance estimate for ( n 1) zz k 0,1,..., n 2 (k ) min, nk zˆn 1 cˆ k 1 (n) zz cˆ (k ) z n k 1 (n) zz (0) next slide ▼ The biased autocovariances of a complex-valued stationary time series can be expressed by the real-valued auto/cross-covariances of the real and imaginary parts: nk 1 (n) ( n) cˆ (k ) zt zt k cˆxx (k ) cˆ(yyn) (k ) i cˆ(yxn) (k ) cˆxy (k ), n t 1 ( n) zz After the time series is extended by the first prediction point computed by: n 1 xn1 yn1 xnk 1 ynk 1 ˆ ˆ a ( k ) b ( k ) k 1 ynk 1 xnk 1 xn2k 1 yn2k 1 nk k 0,1,..., n 1 zn1 xn1 iyn1 where ( n) aˆ(k ) cˆxx (k ) cˆ(yyn) (k ) ( n) bˆ(k ) cˆ(yxn) (k ) cˆxy (k ) k 1 a new estimation of the autocovariance can be computed using the previous one by the following recursion formula: ( n) ˆ ( n k ) c zz (k ) xnk 1 xn1 ynk 1 yn1 i ynk 1 xn1 xnk 1 yn1 ( n1) cˆzz (k ) n k 1 and it can be used to compute the next prediction point zn2 xn2 iyn2 etc. results Autoregressive prediction xt a1 xt 1 a2 xt 2 ... aM xt M nt xˆn1 aˆ1 xn aˆ2 xn1 ... aˆ M xn M 1 xˆn 2 aˆ1 xˆn1 aˆ2 xn ... aˆ M xn M 2 xˆn L aˆ1 xˆn L 1 aˆ2 xˆn L 2 ... aM xn M L Autoregressive coefficients: Autoregressive order: Akaike godness-of-fit criterion: n M 1 2 P( M ) n ( M ) min n M 1 where ˆ ( M ) cˆo aˆ1c1 aˆ 2 c2 ... aˆ M cˆM 2 n aˆ1 aˆ 2 . aˆ M cˆo cˆ1 . cˆ M 1 cˆ1 cˆo . . . cˆM 2 . 1 nk cˆk xt xt k , n t 1 . for cˆM 1 cˆM 2 . cˆo 1 cˆ1 cˆ2 . cˆ M k 0,1,..., n 1 next slide ▼ Uncorrected autocovariance predictions (red) of the deterministic and noise data T=20, 40, 50; A=1, 1, 1; f=0, 0, 0; sd=0 T=50, 57, 60; A=1, 1, 1; f=0, 0, 0; sd=0 2 2 0 0 -2 -2 0 100 200 300 400 500 600 700 800 900 1000 0 1100 100 200 300 T=10, 15, 20, 25, 40, 60, 90, 120, 180; A=1 (all); f=0 (all); sd=0 400 500 600 700 800 900 1000 700 800 900 1000 1100 noise data; sd=1 2 4 0 0 -2 -4 0 100 200 300 400 500 600 700 800 900 1000 1100 0 100 200 300 400 500 600 1100 next slide ▼ Correction to amplitudes of the autocovariance prediction 5 xn+m signal 4 β×xN+L 3 2 1 0 -1 -2 -3 -4 time series -5 0 1. 2. 3. 4. 5. 6. 100 200 300 400 500 600 700 800 900 1000 1100 n=0.7×N where N is the total number of data computation of the autocovariance ck of xt time series for k=0,1,…,n-1 computation of uncorrected autocovariance predictions xn+m for m=1,2,…,N-n+1 computation of the autocovariance ck of prediction time series xn+m for k=0,1,…,m-1 computation of the amplitude coefficient β= sqrt[(|c1| + |c2| +…+ |c8|)/(|c1| + |c2| +…+ |c8|)] computation of corrected autocovariance predictions β×xN+L for L=1,2,….M next slide ▼ Autocovariance (red) and autoregressive (green) predictions of the model data [T=20, 30, 50; A=1, 1, 1] T = (20, 30, 50); A = (1, 1, 1); f = (0, 0, 0), sd=0.0 4 2 0 -2 -4 0 100 200 300 400 500 600 700 800 900 1000 700 800 900 1000 700 800 900 1000 700 800 900 1000 T = (20, 30, 50); A = (1, 1, 1); f=(0, 0, 0), sd=3.0 8 4 0 -4 -8 0 100 200 300 400 500 600 T=(20,30,50), A=(1,1,1), f=(0,0,0), sd=0.0 4 2 0 -2 -4 0 100 200 300 400 500 600 T=(20,30,50), A=(1,1,1), f=(0,0,0), sd=3.0 6 2 -2 -6 0 100 200 300 400 500 600 next slide ▼ Autocovariance (red) and autoregressive (green) predictions of the model data with close frequencies (T=50,57,60, A=1,1,1, noise std. dev.: sd=0,1,2,3) T = 50, 57, 60; A = 1, 1, 1; f=0, 0, , sd=0.0 4 2 0 -2 -4 0 200 400 T = 50, 57, 60; A = 1, 1, 1; f=0, 0, , sd=1.0 600 800 1000 0 200 400 T = 50, 57, 60; A = 1, 1, 1; f=0, 0, , sd=2.0 600 800 1000 0 200 T = 50, 57, 60; A = 1, 1, 1; f=0, 0, , 600 800 1000 4 2 0 -2 -4 8 4 0 -4 -8 8 400 sd=3.0 4 0 -4 -8 0 200 400 600 800 1000 next slide ▼ Autocovariance predictions (red) of the deterministic model data with close frequencies [T=50, 57, 60; A=1, 1, 1] [sd=0.0] 4 2 0 -2 -4 1000 4 2 0 -2 -4 2000 4 2 0 -2 -4 3000 T = 50, 57, 60; A = 1, 1, 1; f=0, 0, , 1200 T = 50, 57, 60; 1400 A = 1, 1, 1; 1600 f=0, 0, , sd=0.0 1800 2000 2200 T = 50, 57, 60; 2400 A = 1, 1, 1; 2600 f=0, 0, , sd=0.0 2800 3000 3800 4000 3200 3400 sd=0.0 3600 next slide ▼ Autocovariance (red) and autoregressive (green) predictions of the model data with many frequencies T=10, 15, 20, 25, 40, 60, 90, 120, 180; A=1 (all); f=0 (all) (noise sd=0,1,2) T = 10, 15, 20. 25, 40, 60, 90, 120, 180; A = 1 (all) f = 0 (all), sd=0.0 4 0 -4 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1000 1100 1200 1000 1100 1200 T = 10, 15, 20. 25, 40, 60, 90, 120, 180; A = 1 (all) f = 0 (all), sd=1.0 4 0 -4 0 100 200 300 400 500 600 700 800 900 T = 10, 15, 20. 25, 40, 60, 90, 120, 180; A = 1 (all) f = 0 (all), sd=2.0 4 0 -4 0 100 200 300 400 500 600 700 800 900 next slide ▼ Autocovariance predictions (red) of the model data with big number of frequencies T=10, 15, 20, 25, 40, 60, 90, 120, 180; A=1 (all); f=0 (all) T = 10, 15, 20. 25, 40, 60, 90, 120, 180; A = 1 (all) f = 0 (all), sd=3.0 8 4 0 -4 -8 0 400 800 1200 T = 10, 15, 20. 25, 40, 60, 90, 120, 180; A = 1 (all) f = 0 (all), 1600 2000 1600 2000 sd=5.0 8 4 0 -4 -8 0 400 800 1200 next slide ▼ Autocovariance (red) and autoregressive (green) predictions of the seasonal model data with random walk phase: Random walk computed by integration of white noise (sd=1o, 2o , 3o) 2 T=365.24, A=1.0 (sd=0.1), f=(random walk, sd=1.0) 1 0 -1 -2 2 0 2000 4000 6000 8000 10000 12000 10000 12000 10000 12000 T=365.24, A=1.0 (sd=0.1), f=(random walk, sd=2.0) 1 0 -1 -2 0 2000 2 4000 6000 8000 T=365.24, A=1.0 (sd=0.1), f=(random walk, sd=3.0) 1 0 -1 -2 0 2000 4000 6000 8000 next slide ▼ Autocovariance (red) and autoregressive (green) predictions of the model data with random walk phase. Random walk computed by integration of white noise (sd= 2o ) T = 365.24, 182.62; A=1.0, 0.5, f = random walk sd=2.0 2 1 0 -1 -2 0 2000 4000 6000 8000 10000 12000 14000 T=365.24, 433.00; A=0.08, 0.16, f=random walk (sd=2) 0.4 0.2 0 -0.2 -0.4 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 next slide ▼ Autocovariance (red) and autoregressive (green) predictions of noise data [sd=1.0] noise data, sd=1.0 3 2 1 0 -1 -2 -3 0 200 400 600 800 1000 1200 1400 1600 1800 2000 next slide ▼ Conclusions • The input time series for computation of autocovariance and autoregressive predictions should be stationary, because in both methods the autocovarince estimates are assumed as functions of time lag only. • The autocovariance prediction formulae do not able to estimate the appropriate value of prediction amplitude, so it must be rescaled using constant value of the amplitude coefficient β estimated empirically. • The accuracy of the autocovariance predictions depend on the length of time series and noise level in data. The predictions may become unstable and when the length of time series decreases, the noise level is big or the frequencies of oscillations are too close. • The autoregressive prediction is not recommended for noisy time series, but it can be applied when oscillation frequencies are close. • The autocovariance prediction method can be applied to noisy time series if their length is long enough, but it is not recommended if frequencies of oscillations are close. • The autocovariance prediction shows better performance than the autoregressive method on the model data in which the phases are modeled as a random walk. • The autocovariance predictions of noise data are similar to noise with smaller standard deviations and autoregressive predictions are close to zero. next slide References • • • • • Barrodale I. and Erickson R. E., 1980, Algorithms for least-squares linear prediction and maximum entropy spectral analysis - Part II: Fortran program, Geophysics, 45, 433-446. Brzeziński A., 1994, Algorithms for estimating maximum entropy coefficients of the complex valued time series, Allgemeine Vermessungs-Nachrichten, Heft 3/1994, pp.101112, Herbert Wichman Verlag GmbH, Heidelberg. Kosek W., 1993, The Autocovariance Prediction of the Earth Rotation Parameters. Proc. 7th International Symposium ”Geodesy and Physics of the Earth” IAG Symposium No. 112, Potsdam, Germany, Oct. 5-10, 1992. H. Montag and Ch. Reigber (eds.), Springer Verlag, 443-446. Kosek W., 1997, Autocovariance Prediction of Short Period Earth Rotation Parameters, Artificial Satellites, Journal of Planetary Geodesy, 32, 75-85 Kosek W., 2002, Autocovariance prediction of complex-valued polar motion time series, Advances of Space Research, 30, 375-380. next slide Acknowledgments Paper was supported by the Polish Ministry of Science and Education, project UMO-2012/05/B/ST10/02132 under the leadership of Prof. A. Brzeziński.
© Copyright 2026 Paperzz