7.4 Arc Length and Surface of Revolution (Photo not taken by Vickie Kelly) Greg Kelly, Hanford High School, Richland, Washington Objectives • Find the arc length of a smooth curve. • Find the area of a surface of revolution. Rectifiable curve: One that has a finite arc length f is rectifiable on [a,b] if f ' is continuous on [a,b]. If rectifiable, f is continuously differentiable on [a,b] and its graph is a smooth curve. Lengths of Curves: ds If we want to approximate the length of a curve, over a short distance we could measure a straight line. dy dx By the pythagorean theorem: ds dx dy 2 ds dx dy 2 2 2 2 ds S dx dy 2 S 2 dx dy 2 2 2 dx dx dx 2 2 dy 2 1 2 dx dx Length of Curve (Cartesian) We need to get dx out from 2 under the radical. b dy S a 1 dx dx Length of Curve (Cartesian) (function of x) S b a 1 f x dx 2 Length of Curve (Cartesian) (function of y) S d c 1 g y dy 2 Example: Find the arc length of: 3 x 1 y 6 2x 1 , 2 2 dy 3x 2 1 1 2 1 2 x 2 2 x dx 6 2x S b a 2 dy 1 dx dx 2 2 S 1 2 1 2 1 1 x 2 dx x 2 Example Find the arc length of: 3 x 1 y 6 2x 1 , 2 2 2 1 2 1 1 x 2 dx x 2 2 S 1 2 S 1 2 2 1 4 1 1 x 2 4 dx 4 x 2 2 1 4 1 2 4 2 S 1 x x 2 dx 1 x x dx 4 2 4 2 2 2 1 11 3 1 2 2 S 1 x x dx x 33 16 23 x 1 2 2 2 2 Example: Find the arc length of: Solve for x: x y 1 x y 1 x y 1 dx S 5 S 5 1 1 dy 3 3 2 y 1 2 (since [0,8]) y 1 2 x 2 on 0,8 When x=0: 0 y 13 3 3 y 1 3 1 2 When x=8: 64 y 13 4 y 1 2 1 3 1 y 1 2 dy 2 y5 5 9 5 9 1 y 1 dy y dy 1 4 4 4 Example: Find the arc length of: S 5 1 1 5 5 9 4 y 4 dy 2 1 x 2 on 0,8 u 9y 5 9 y 5dy du 9dy y 1 du dy 9 40 1 1 u 2 du 18 4 1 32 u 27 40 4 3 1 40 2 8 27 3 9.0734 Surface Area: ds Consider a curve rotated about the x-axis: The surface area of this band is: r The radius is the y-value of the function, so the whole area is given by: 2 r ds b a 2 y ds This is the same ds that we had in the “length of curve” formula, so the formula becomes: To rotate about the y-axis, just reverse x and y in the formula! Surface Area about x-axis (Cartesian): 2 dy S 2 y 1 dx a dx b If revolving f(x) about x-axis r(x)=f(x) or g(y) about the y-axis: r(y)=f(y) Example: Find the area of the surface formed by revolving y x 3 on [0,1] about the x-axis. 2 dy S 2 y 1 dx 0 dx 1 r=y 1 S 2 x 3 0 1 S 2 x 1 9 x dx 3 S 18 10 1 u 1 2 dx du 36 x3dx du du 10 2 u 1 9 x4 4 0 1 3x 2 10 36 x3 dx 32 S u u 10 10 1 18 3 1 27 1 27 2 3 2 3.563 If revolving f(x) about y-axis r(x)=x or g(y) about the x-axis: r(y)=y Example: Find the area of the surface formed by revolving y x 2 on 0, 2 about the y-axis. 2 S 2 2 0 r=x S 2 0 dy x 1 dx dx 2 x 1 2 x dx 2 u 1 4x2 S 2 0 2 du 8 xdx x 1 4 x dx 2 du 8x 9 dx du S 2 xu 8x 9 4 1 1 9 2 32 3 S u u 2 27 1 13 43 1 6 6 1 3 9 1 2 du u 1 2 Homework 7.4 (page 485) #3 – 13 odd, 17 – 25 odd (Don't graph), 37, 39, 43 (Use the calculator to evaluate integrals.)
© Copyright 2026 Paperzz