Review for Lectures 14-16 ² Inner Product: 2 3 v1 6 v2 7 6 7 ~u ¢ ~v = ~uT ~v = [u1 ; u2 ; :::; un ] 6 .. 7 = u1 v1 + u2 v2 + ::: + un vn 4.5 vn ² Norm, Unit vector & distance: k~uk = The vector q p ~u ¢ ~u = u21 + u22 + ::: + u2n : ~u k~uk is called the unit vector in the same direction as ~u: Then, q dist (~u; ~v ) = k~u ¡ ~vk = (u1 ¡ v1 )2 + (u2 ¡ v2 )2 + ::: + (un ¡ vn )2 : °2 3 2 3° °2 3° ° 3 ° ° 2 ° ° ° ° 1 ° °6¡57 6 1 7° °6¡67° p 6 7 6 7° °6 7° dist (~u; ~v ) = k~u ¡ ~vk = ° °4 1 5 ¡ 4 0 5° = °4 1 5° = 47: ° ° ° ° ° 2 ¡1 ° ° 3 ° ² Orthogonality: ~u is said to be orthogonal to ~v if ~u ¢ ~v = 0: Theorem 14.1 (Pythagorean & Triangle Inequality) Let ~u and ~v be two vectors in Rn : Then 1. ~u and ~v are perpendicular, denoted by ~u ? ~v; i¤ k~u ¡ ~vk2 = k~u k2 + k ~vk2 or k~u + ~vk2 = k~u k2 + k ~v k2 : 2. The following triangle inequality holds k~u ¡ ~vk · k~u k + k ~vk ; 1 3. The above triangle inequality becomes equality, i.e., k~u ¡ ~vk = k~u k + k ~vk i¤ ~u = ¸~v for some scalars ¸: De…nition 14.5. Let W be a subspace of Rn : A vector ~u is said to be orthogonal to W; denoted by ~u ?W; if ~u is orthogonal to every vector in W; i.e., ~u ¢ w ~ = 0 for any w ~ 2 W (w ~ 2 W means w ~ belongs to W ). We call the subspace W ? = f~v j ~v ? W g the orthogonal complement space of W: ² Finding orthogonal complement: let W = Span f~u1 ; ~u2 ; :::; ~upg be a subspace in Rn : Then 2 3 ~uT1 ³ ´T 6~uT 7 6 27 W ? = Null (A) ; A = [~u1 ~u2 ::: ~up]n£p = 6 .. 7 : 4 . 5 ~uTp p£n This relation may be summarized as ¡ ¢? ¡ ¢ Col (A)? = Row AT = N ull AT : ² Orthogonal Set: f~u1 ; ~u2 ; :::; ~up g is called an orthogonal set if ~ui ¢ ~uj = 0 for i 6= j: Theorem 15.1. Any orthogonal set is linearly independent. Theorem 15.2. Let B= f~u1 ; ~u2 ; :::; ~up g be an orthogonal basis for a subspace W: Then, for each w ~ 2 W; its coordinate [w] ~ B relative to this orthogonal basis can be expressed as 2 3 c1 6c2 7 w ~ ¢ ~ui 6 7 [w] ~ B = 6 .. 7 ; ci = ; i = 1; 2; :::; p: (1) 4.5 k~ui k2 cp In other words, w ~ = c1 ~u1 + c2 ~u2 + ::: + cp~up w ~ ¢ ~u1 w ~ ¢ ~u2 w ~ ¢ ~up = u1 + u2 + ::: + ~up : 2~ 2~ k~u1 k k~u2 k k~up k2 2 (2) ² Orthogonal Projections. De…nition 15.3. Given a vector ~u; the orthogonal projection of ~y onto ~u; denoted by y^ = P roj~u (~y) ; is de…ned as the vector y^ parallel to ~u such that ~y = y^ + ~z ; ~z ? ~u: In general, for any subspace W; the orthogonal projection of ~y onto W; denoted by y^ = P rojW (~y) ; is de…ned as the vector in W such that (~y ¡ y^) ? W: In other words, ~y = y^ + z; y^ 2 W; z? W: This means that any vector ~y can be decomposed into two components: one is the projection y^ on W (which is in W ) and other component is perpendicular to W: Suppose W has an orthogonal basis B= f~u1 ; ~u2 ; :::; ~up g : Then y^ = P rojW (~y) = P roj~u1 (~y ) + P roj~u2 (~y) + ::: + P roj~up (~y ) ~y ¢ ~u1 ~y ¢ ~u2 ~y ¢ ~up = u1 + u2 + ::: + ~up 2~ 2~ k~u1 k k~u2 k k~up k2 (3) Theorem 15.3. Let U = [~u1 ; ~u2 ; :::; ~un ] be a n £ n matrix with columns ~u1 ; ~u2 ; :::; ~un . Suppose that the columns of U form an orthonormal set. Then U ¡1 = U T ; i:e:; UU T = U T U = I: We call such matrix U orthonormal matrix. Note that the same technique may be used to calculate the inverse of a matrix A = [u1 ; u2 ; :::; un ]; where the column vectors ~u1 ; ~u2 ; :::; ~un form an orthogonal set, but not orthonormal set. In this case, 2 3 2 3 (~u1 )T ~u1 (~u1 )T ~u2 ::: (~u1 )T ~un ~u1 ¢ ~u1 0 ::: 0 6 (~u2 )T ~u1 (~u2 )T ~u2 ::: (~u2 )T ~un 7 6 0 ~u2 ¢ ~u2 ::: 0 7 7=6 7: AT A = 6 4 ::: 5 4 ::: ::: ::: ::: 5 ::: ::: ::: 0 0 ::: ~un ¢ ~un (~un )T ~u1 (~un )T ~u2 ::: (~un )T ~un So 2 ~u1 ¢ ~u1 0 6 0 ~ u u2 2 ¢~ 6 4 ::: ::: 0 0 3¡1 ::: 0 ::: 0 7 7 AT A = I; ::: ::: 5 ::: ~un ¢ ~un 3 i.e., A¡1 2 ~u1 ¢ ~u1 0 6 0 ~u2 ¢ ~u2 =6 4 ::: ::: 0 0 2 1 0 6 ~u1 ¢ ~u1 6 1 6 6 0 =6 ~u2 ¢ ~u2 6 ::: ::: 6 4 0 0 3¡1 ::: 0 ::: 0 7 7 AT ::: ::: 5 ::: ~un ¢ ~un 2 3 3 (~u1 )T ::: 0 72 6 ~u ¢ ~u 7 T3 6 1 T1 7 7 (~u1 ) 6 (~u2 ) 7 76 T7 7 ::: 0 7 6 (~u2 ) 7 6 6 ~u ¢ ~u 7 : = 74 2 27 ::: 5 6 6 ::: 7 ::: ::: 7 7 T 6 7 1 5 (~un ) 4 (~un )T 5 ::: ~un ¢ ~un ~un ¢ ~un Example 15.5. We know from previous examples that 2 3 2 3 2 3 3 ¡1 ¡1 1 1 1 ~u1 = p 415 ; ~u2 = p 4 2 5 ; ~u3 = p 4¡45 11 1 6 1 66 7 form an orthonormal basis, but 2 3 2 3 3 ¡1 ~v1 = 415 ; ~v2 = 4 2 5 ; 1 1 form only an orthogonal basis. Set 2 3 ¡1 ~v3 = 4¡45 7 2 3 3 ¡1 ¡1 p p p 6 11 6 66 7 6 1 7 2 ¡4 6p 7 p p U = [~u1 ; ~u2 ; ~u3 ] = 6 7 6 11 6 66 7 4 1 1 7 5 p p p 11 6 66 2 3 3 ¡1 ¡1 4 V = [~v1 ; ~v2 ; ~v3 ] = 1 2 ¡45 : 1 1 7 The …rst matrix U is an orthogonal matrix, and 2 3 1 p p 6 11 11 6 2 6 ¡ p1 ¡1 T p U =U =6 6 6 6 4 1 4 ¡p ¡p 66 66 4 3 1 p 11 7 1 7 p 7 7: 67 7 5 p 66 The matrix is not an orthonormal matrix. However, 2 32 3 2 3 3 1 1 3 ¡1 ¡1 11 0 0 V T V = 4¡1 2 15 41 2 ¡45 = 4 0 6 0 5 : ¡1 ¡4 7 1 1 7 0 0 66 Therefore, 2 3¡1 11 0 0 4 0 6 0 5 V T V = I; 0 0 66 or V ¡1 ² Applications: 2 11 0 =40 6 0 0 2 ¡1 11 =4 0 0 2 3 6 11 6 1 =6 6 ¡6 4 1 ¡ 66 3¡1 0 05 VT 66 32 3 0 0 3 1 1 6¡1 0 5 4¡1 2 15 0 66¡1 ¡1 ¡4 7 3 1 1 11 11 7 1 17 7: 3 67 2 75 ¡ 33 66 1. Theorem 15.4 (Orthonormal Decomposition) Let B= f~u1 ; ~u2 ; :::; ~up g be an orthonormal basis of a subspace W in Rn : Then, the orthogonal projection of any vector ~y onto ~ui and orthogonal projection of any vector ~y onto W have the following expressions, respectively, P roj~ui (~y ) = (~y ¢ ~ui ) ~ui ; i = 1; 2; :::; p p p X X P rojW (~y ) = (~y ¢ ~ui ) ~ui = P roj~ui (~y ) ; i=1 i=1 and ~y = P rojW (~y ) + ~z ; ~z ? W: Moreover, if we set U = [~u1 ; ~u2 ; :::; ~up ]n£p to be a matrix whose columns are f~u1 ; ~u2 ; :::; ~up g ; then P rojW (~y) = UU T ~y: (4) 5 2. Theorem 15.5 (Best Approximation) Let W be a subspace. Then, for any vector ~y , P rojW (~y ) 2 W is the best approximation to ~y by vectors in W . More precisely, P rojW (~y) is the closest point in W to ~y , i.e., k~y ¡ P rojW (~y)k · k~y ¡ wk ~ ; for any w ~ 2 W: (5) 3. Least-Square Approximation Solution Theorem 16.1 Consider inconsistent linear systems A~x = ^b: Then the following linear system AT A^ y = AT ~b is always consistent, and any solution y^ of this consistent linear system is a least-squares approximation solution. ² Two-Step procedure: 1. Calculate B = AT A and ^b = AT ~b 2. Solve B^ y = ^b: 6
© Copyright 2026 Paperzz