Name____________________________ Sheilah Chason Intro to Sinusoidal Curves Date______________ Math 433 Aim: To explore the stretching and shrinking of sinusoidal curves and to graph these curves with different amplitudes and periods. 1. Modeling with the Sine Function Take a look at the following graph, which shows the approximate average daily high temperature in New York's Central Park. # # Source: National Weather Service/The New York Times, January 7, 1996, p. 36. Each year, the pattern repeats over and over, resulting in the following graph. Here, the x-coordinate represents time in years with x = 0 representing August 1, while the y-coordinate represents the temperature in o F. This is an example of cyclical or periodic behavior. Cyclical behavior is common in the business world; just as there are seasonal fluctuations in the temperature in Central Park, there are seasonal fluctuations in the demand for surfing equipment, swimwear, snow shovels, and the list goes on. The following graph even suggests a cyclical behavior in employment at securities firms in the United States. Ý Next year we will derive these types of sinusoidal curves. For now we will explore changing the amplitude and frequency. Directions: Fill out the chart. Plot all points. Do not connect the points. Θ Deg. tanθ -360 -270 Y=tanθ -180 90 0 90 180 270 Domain: 360 30 45 60 120 135 150 210 225 240 300 315 Range: 2 y 1 x -360 -330 -300 -270 -240 -210 -180 -150 -120 -90 -60 -30 30 -1 -2 60 90 120 150 180 210 240 270 300 330 360 330 Name____________________________ Sheilah Chason Trig Graphs Y=sinθ Range: Domain: 2 Date______________ Math 433 Critical Values: y 1 x -360 -330 -300 -270 -240 -210 -180 -150 -120 -90 -60 -30 30 60 90 120 150 180 210 240 270 300 330 360 -1 -2 Y=cosθ Domain: Range: Critical Values: 2 y 1 x -360 -330 -300 -270 -240 -210 -180 -150 -120 -90 -60 -30 30 60 90 120 150 180 210 240 270 300 330 360 -1 -2 Y= tanθ Domain: Range: Critical Values: 2 y 1 x -360 -330 -300 -270 -240 -210 -180 -150 -120 -90 -60 -30 30 -1 -2 60 90 120 150 180 210 240 270 300 330 360 Amplitude: On a sinusoidal curve, the difference between the maximum and minimum points divided by two. Θ -2π Y=sinθ Y=2sinθ Y=0.5sinθ Y=-sinθ Y=cosθ Y=-2cosθ Y=1.5cosθ -3 π/2 -π - π/2 0° π/2 π 3 π/2 2π y y x x y Summary of Amplitude: y x x Period: Frequency: Θ Y=sinθ Y=-sin2 θ Y=sin2θ Y=1.5sin2θ Y=cosθ Y=cos2θ Y=-0.5cos2θ 0 π/4 π /2 3 π/4 π 5 π/4 3 π/2 7 π/4 2π y x y x y x x y Θ Y=sinθ Y=sin0.5θ Y=2sin0.5θ Y=-sin2θ Y=cosθ Y=cos0.5θ -2π -3 π/2 -π - π/2 0° π/2 π 3 π/2 2π 2.0 y 2.0 1.5 1.5 1.0 1.0 0.5 y 0.5 x -2p -3p 2 -p -p 2 p 2 p 3p 2 2p x -2p -3p 2 -p -p 2 -0.5 -0.5 -1.0 -1.0 -1.5 -1.5 -2.0 -2.0 2.0 2.0 p 2 p 3p 2 2p p 2 p 3p 2 2p p 2 p 3p 2 2p y y 1.5 1.5 1.0 1.0 0.5 x 0.5 x -2p -3p 2 -p -p 2 p 2 p 3p 2 -2p -3p 2 -p -p 2 -0.5 2p -0.5 -1.0 -1.0 -1.5 -1.5 -2.0 -2.0 2.0 y 2.0 y 1.5 1.5 1.0 1.0 0.5 0.5 x -2p -3p 2 -p -p 2 p 2 -0.5 p 3p 2 x 2p -2p -3p 2 -p -p 2 -0.5 -1.0 -1.0 -1.5 -1.5 -2.0 -2.0 Y=-2cos0.5θ Graph the following, over the given domain, indicating the amplitude, period and frequency, and critical values. 1)Y=-1.5 sinx; 0≤x≤2π y Amplitude: Frequency: Period: x Critical Values: 2)Y=cos2x ; -π≤x≤π y Amplitude: Frequency: Period: x Critical Values: 3)Y=2sin0.5x; [-π,π] y Amplitude: Frequency: Period: Critical Values: x 1)Graph Y= -sin0.5x and Y= 2cosx over the interval [0,2π] Amplitude: Amplitude: Frequency: Frequency: Period: Period: Critical Values: Critical Values: y x 2)Graph Y= 1.5sin2x and Y= -cos0.5x over the interval [-2 π,2π] Amplitude: Amplitude: Frequency: Frequency: Period: Period: Critical Values: Critical Values: y x Graph the following, over the given domain, indicating the amplitude, period and frequency, and critical values. 1)Y=0.5 sinx; 0≤x≤2π y Amplitude: Frequency: Period: x Critical Values: 2)Y=2cos(0.5x) ; [-2π,2π] y Amplitude: Frequency: Period: Critical Values: x y 3)Y=-1.5sin(2x); [-π,π] Amplitude: Frequency: Period: Critical Values: x Graph both functions on the same coordinate axis and determine the number of points of intersection. 1)Graph Y= sin2x and Y= -0.5cosx over the interval [0,2π] Amplitude: Amplitude: Frequency: Frequency: Period: Period: Critical Values: Critical Values: y x 2)Graph Y= -1.5sinx and Y= 2cos0.5x over the interval [-π,π] Amplitude: Amplitude: Frequency: Frequency: Period: Period: Critical Values: Critical Values: y x Graph the following, over the given domain, indicating the amplitude, period and frequency, and critical values. 1)Y= tan2x; 0≤x≤2π y Frequency: Period: Critical Values: x 2)Y=-tanx ; [-2π,2π] y Frequency: Period: Critical Values: x y 3)Y=-tan (2x); [-π,π] Frequency: Period: Critical Values: x Name__________________________________ Sheilah Chason Date__________________ Math 442 Aim: How to graph y=asin(bx)+c and y=acos(bx)+c. To Do: If sec 40°=1.3054, find the following: Cos 40° = Sec 140° = Sec -40° = Cos 220° = Name that Graph y y y 4 4 1.5 3 3 2 1.0 2 1 x -2p -3p/2 -p -p/2 p/2 p 3p/2 0.5 2p 1 -1 x x -2 -2p -3p/2 -p -p/2 p/2 p 3p/2 -2p 2p -3p/2 -p -p/2 p/2 p 3p/2 2p -1 -3 -0.5 -4 -2 -1.0 -5 -3 -1.5 -4 -5 -2.0 Domain: Range: Amplitude: Domain: Range: Amplitude: Domain: Range: Amplitude: y y 2.8 1.6 y 2.4 1.5 2.0 1.2 1.6 1.0 1.2 0.8 0.8 0.5 0.4 0.4 x x -p x -2p -3p/2 -p -p/2 p/2 p 3p/2 -p/2 2p -2p -3p/2 -p -p/2 -0.5 p/2 p 3p/2 p/2 -0.4 2p p -0.8 -1.2 -0.4 -1.6 -1.0 -2.0 -0.8 -2.4 -1.5 -2.8 -1.2 -2.0 Domain: Range: Amplitude: Domain: Range: Amplitude: y Domain: Range: Amplitude: y 2.8 y 2.4 2.0 1.0 1.6 0.5 1.2 0.8 0.5 0.4 x x -3p/2 -p -p/2 p/2 p 3p/2 x -3p/2 -p -p/2 p/2 p 3p/2 -2p -3p/2 -p -p/2 -0.4 -0.8 -1.2 -0.5 -1.6 -2.0 -0.5 -1.0 -1.5 Domain: Range: -2.4 -2.8 -1.0 Domain: Range: Domain: Range: p/2 p 3p/2 2p Amplitude: Amplitude: Amplitude: Vertical Shift of main axis(c): y G(x)=sin(x)+1 Amplitude: Frequency: Period: x Critical Values: Vertical Shift: Domain: [-2π,2π] Range: G(π)= y G(x)=sin(2x)+1 Amplitude: Frequency: Period: Critical Values: x Vertical Shift: Domain: [-2π,2π] Range: G(π)= f(x)=cos(2x)-2 y Amplitude: Frequency: Period: Critical Values: x Vertical Shift: Domain: [0,2π] Range: F(π)= H(x)= -sin(3x)-2 y Amplitude: Frequency: Period: Critical Values: x Vertical Shift: Domain: [-2π/3,2π/3] Range: H(-π) G(x)=2cos(0.5x)+3 y Amplitude: Frequency: Period: Critical Values: Vertical Shift: Domain: [-2π,2π] x Range: G(π/2)= F(x) = -2sin (0.5x)+2 y Amplitude: Frequency: Period: x Critical Values: Vertical Shift: Domain: [-2π,2π] Range: F(π)= M(x)=-2.5sin(2x)-1 y Amplitude: Frequency: Period: Critical Values: x Vertical Shift: Domain: [-π,π] Range: F(π)= S(x)= -1cos(0.5x)-2 y Amplitude: Frequency: Period: Critical Values: x Vertical Shift: Domain: [-π,π] Range: s(2π)= E(x)= 2sin3x-4 y Amplitude: Frequency: Period: Critical Values: x Vertical Shift: Domain: [-2π/3,2π/3] Range: s(π)= Sketch y sin( ) and y sin( ) 1 on the axis below. y x Sketch y cos( ) and y cos( ) 2 on the axis below. y x Graph the following, over the given domain, indicating the amplitude, period and frequency, and critical values. 1)Y=-1.5 sin(x)-2; 0≤x≤2π y Amplitude: Frequency: Period: x Critical Values: y 2)Y=cos(2x)+1 ; -π≤x≤π Amplitude: Frequency: Period: x Critical Values: y 3)Y=-2sin(0.5x)-3 [-π,π] Amplitude: Frequency: x Period: Critical Values: 1)Graph and Y= Amplitude: Amplitude: Frequency: Frequency: Period: Period: Critical Values: Critical Values: over the interval [ ] y x 2) Graph and Y= Amplitude: Amplitude: Frequency: Frequency: Period: Period: Critical Values: Critical Values: over the interval [ y x ]
© Copyright 2026 Paperzz