SRI VENKATESWARA COLLEGE OF ENGINEERING DEPARTMENT OF APPLIED MATHEMATICS WORK SHEET- MA6251- MATHEMATICS – II UNIT III–LAPLACE TRANFORM Part A 1. State the sufficient conditions for the existence of Laplace transform. 2 2. Give two examples for which the Laplace transform do not exist. [Ans: et , tan t ] 3. Give an example of a function such that it has Laplace transform but it is not satisfying the continuity condition. [Ans: 1 t ] 4. State & prove first shifting theorem. 5. If L( f (t )) F ( s) , prove that L( f (at )) (1 a) F s a . 6. If L( f (t )) F ( s) , prove that L( f (t a)) aF as . 7. Define Heaviside’s unit step function; find its Laplace transform. 8. Define unit impulse (Dirac-delta) function. 9. State Initial Value & Final Value Theorems. 10. State convolution theorem. 11. Define inverse Laplace transform as contour integral. 12. Find the Laplace transform of the following functions: (i)t sin 2t (ii) cos 2 3t (iii)sin t cos3t (iv)sin 3 4t 2 1 11 s 6 4s 2 [Ans:(i) 2 (ii) 2 (iv) 2 ] (iii) 2 2 s 16 s 4 2 s s 36 ( s 1)( s 2 9) ( s 4) 13. Find the inverse Laplace transform of the following functions: 5t 2 et t 3 2s 2 4s 5 1 s [Ans(i) 2 4t (ii) (iii) e2t (1 2t ) ] (i) (ii) (iii) 3 4 2 2 6 s ( s 1) ( s 2) 14. If L f (t ) s2 , find f (t )dt . s2 4 0 15. If L( f (t )) 1 , find f (0) & f () s( s a) [Ans:1/2] [Ans: 0, 1/a] Part-B I. State & prove the following results: (1) Second Shifting Theorem (2) Initial Value Theorem (3) Final Value Theorem II.Derive the Laplace transform of a periodic function f (t) with the period P. III.Find the Laplace transform of the unit impulse (Dirac-Delta) function. IV.Find the Laplace transform of the following functions: s3 6( s 4) (1) cosh at cos at (2) te 4t sin 3t [Ans: (1) 4 (2) 2 ] 4 s 4a ( s 8s 25) 2 e at e bt 2s( s 2 3) sb (3) t 2 e t cos t (4) [Ans: (3) 2 (4) log ] 3 t ( s 1) sa (5) cos 2t cos 3t t (7) e 4 t t t sin 3tdt 0 e3t sin 2t t t sin 3t dt (8) e 2t t 0 (6) s 2 b2 s2 (6) cot 1 ] 2 2 s a 3 1 6 s2 cot 1 [Ans:(7) 2 (8) ] 2 s2 ( s 8s 25) 3 [Ans: (5) log cos t 41s V.Given L(sin t ) e . e , show that L s s 2s t VI.Find the Laplace transform of the following functions: t , 0 t a (1) The rectangular-wave function f (t ) and f (t 2a) f (t ) 2a t , a t 2a a sin t , 0 t and f (t 2 ) f (t ) (2)The half-sine wave rectifier function f (t ) 0, t 2 k , 0 t a (3) The square-wave function f (t ) and f (t 2a) f (t ) k , a t 2a (4)The saw-tooth wave function f (t ) kt p, for 0 t p and f (t p) f (t ) 1 [Ans: (1) 1 4s a 1 k k ke s as as tanh tanh (2) (3) (4) ] s2 s 2 s 1 e s 2 2 s 2 2 1 e s / s VII.Find the inverse Laplace transform of the following functions: s2 s 1 s2 se s s 1 1 k (1) (2) cot (3) 2 (4) log (6) 4 (5) s s 4a 4 ( s 1)( s 2 4s 13) ( s 4s 5) 2 ( s 3)5 s 1 1 3(t 1) sin kt 2sinh t e 2t t sin t 3 4 e 4( t 1) 3( t 1) u ( t ) (2) (3) (4) 1 24 t t 2 1 2t 1 (5) e (cos 3t 2sin 3t ) e t (6) cos at sinh at sin at cosh at ] 5 2a VIII.Verify Initial & Final Value Theorems for the following functions: 1. f (t ) 1 et (sin t cos t ) [Ans:(1) 2. f (t ) et (t 2)2 IX.Find the inverse Laplace transform of the following functions using convolution theorem: s 2 s2 (1) 2 (2) (3) 2 2 2 2 (s a ) ( s 1)( s 4) ( s 4s 13) 2 4 s2 (4) 2 (5) 2 ( s 2s 5) 2 ( s a 2 )(s 2 b2 ) t sin at 2 t a sin at b sin bt sin 2t e 2t t sin 3t 1 t 2) e cos 2t 4) e (sin 2t 2t cos 2t ) 5) ] 3) 2a 4 a 2 b2 5 2 6 X. Solve the following differential equations using Laplace transform: 4 1 1. y '' 9 y cos 2t , y (0) 1, y ( / 2) 1 [Ans: y (t ) cos 3t sin 3t cos 2t ] 5 5 t 2 et t t t 2. y '' 2 y ' y e , y(0) 2, y '(0) 1 [Ans: y (t ) te 2e ] 2 3. y '' y ' 2 y 3cos 3t 11sin 3t , y(0) 0, y '(0) 6 [Ans: y sin 3t e2t et ] 4. x '' 3x ' 2 x 2(t 2 t 1), x(0) 2, x '(0) 0 [Ans: x t 2 2t 3 e 2t ] [Ans:1) 5. x " 2 x ' x t 2 e t , x(0) 2, x1 (0) 3 6. y " 3 y ' 4 y 2e t , y(0) 1 y1 (0) 7. y"2 y'5 y e t sin t , y(0) 0, y' (0) 1 [Ans: x e t [(t 4 12t 24) / 12] ] [Ans: y (12e 4t 13e t 10te t ) / 25 ] [Ans: y e t (sin t sin 2t ) / 3 ] -----
© Copyright 2026 Paperzz