Positron annihilation study of equilibrium point defects in GaAs

Positron annihilation study of
equilibrium point defects in GaAs
Dissertation
zur Erlangung des akademischen Grades
Dr. rerum naturlalium (Dr. rer. nat.)
vorgelegt der
Mathematisch-Naturwissenschaftlich-Technischen Fakultät
(mathematisch-naturwissenschaftlicher Bereich)
der
Martin-Luther-Universität Halle-Wittenberg
von Herrn
Vladimir Bondarenko
geb. am 15.02.1978 in Sumy, Ukraine
Gutachter:
(1) Prof. Dr. R. Krause-Rehberg
(2) Prof. Dr. U. M. Gösele
(3) Prof. Dr. P. Masher
urn:nbn:de:gbv:3-000006446
[http://nbn-resolving.de/urn/resolver.pl?urn=nbn%3Ade%3Agbv%3A3-000006446]
Halle(Saale), November 2003
verteidigt am 30.01.2004
Table of contents
1.Introduction ____________________________________________________ 1
2.
3.
Thermodynamics of native point defects in GaAs_____________________ 3
2.1
GaAs system at melting point _____________________________________ 3
2.2
Defects chemistry in GaAs________________________________________ 5
2.3
Tan model and Fermi-level effect __________________________________ 7
2.4
Quantum mechanical calculations _________________________________ 9
2.5
Electrical compensation in n-type GaAs ___________________________ 11
Experimental methods _________________________________________ 13
3.1
3.1.1
3.1.2
3.2
3.2.1
3.2.2
4.
Positron annihilation lifetime spectroscopy _________________________ 13
Physical background of positron trapping ________________________________ 13
Measurement principle and trapping model ______________________________ 14
Temperature dependence of positron trapping in semiconductors ______ 16
Theory ___________________________________________________________ 16
Model of positron trapping for experimental data fitting ____________________ 21
3.3
Coincidence Doppler-broadening spectroscopy _____________________ 24
3.4
Procedure of positron annihilation measurements ___________________ 26
3.5
Other methods ________________________________________________ 27
Vacancy formation in n-type silicon-doped GaAs ___________________ 29
4.1
Introduction __________________________________________________ 29
4.2
Heavily silicon doped GaAs ______________________________________ 31
4.2.1
4.2.2
4.2.3
Experimental ______________________________________________________ 31
Defect identification by means of positron annihilation _____________________ 31
Model of the compensation mechanism _________________________________ 33
4.3
Influence of dislocations on the lateral distribution of SiGaVGa complexes in
Si-doped VGF GaAs wafers ___________________________________________ 35
4.3.1 Experimental details ________________________________________________ 36
4.3.2 Correlation between photoluminescence and positron annihilation investigations of
silicon doped VGF GaAs ___________________________________________________ 37
4.3.3 Lateral variation of the compensation degree in VGF GaAs:Si _______________ 41
4.4
4.4.1
4.4.2
4.4.3
4.5
Identification of the 0.95 eV luminescence band in VGF GaAs:Si ______ 44
Experimental ______________________________________________________ 44
Cathodoluminescence spectroscopy ____________________________________ 45
Defect identification by positron annihilation _____________________________ 47
Discussion: defects formation in VGF GaAs:Si______________________ 49
5. Vacancy formation in semi-insulating and silicon-doped GaAs under
equilibrium conditions_____________________________________________ 51
5.1
Experimental__________________________________________________ 51
5.2
Defects detected by PALS in annealed GaAs________________________ 53
5.2.1
5.2.2
5.2.3
5.3
5.3.1
5.3.2
5.3.3
5.3.4
6.
Si-doped GaAs_____________________________________________________ 53
Undoped semi-insulating GaAs________________________________________ 54
Reproducibility of results for annealed SI GaAs ___________________________ 55
Defect identification in annealed n-type and SI GaAs ________________ 59
Identification of vacancies____________________________________________ 59
Identification of shallow traps in undoped annealed GaAs ___________________ 62
Charge state of the VAs complex _______________________________________ 64
Gibbs free energy of VAs formation_____________________________________ 66
Defects study in intentionally undoped VCz-grown GaAs _____________ 67
6.1
Growth method________________________________________________ 67
6.2
Carbon controlled growth _______________________________________ 69
6.3
Influence of the melt stoichiometry and unintentional doping on vacancy
formation___________________________________________________________ 71
6.4
6.4.1
6.4.2
6.4.3
Results of PALS measurements __________________________________ 73
Semi-insulating GaAs _______________________________________________ 73
p-type GaAs_______________________________________________________ 75
n-type GaAs_______________________________________________________ 77
6.5
Validity of positron annihilation for determination of vacancy
concentration _______________________________________________________ 79
6.6
7.
On the temperature dependence of positron trapping in GaAs _________ 82
7.1
GaAs:Si vs GaAs:Te____________________________________________ 83
7.2
Positron trapping in GaAs doped with Si and Te simultaneously _______ 85
7.2.1
7.2.2
7.2.3
7.3
8.
Summary _____________________________________________________ 80
Experimental ______________________________________________________ 85
Results of temperature-dependent PALS measurements _____________________ 86
Discussion ________________________________________________________ 87
Systematization of results _______________________________________ 89
Summary____________________________________________________ 93
References ______________________________________________________ 95
Eidesstattliche Erklärung
Curriculum Vitae
Acknowledgments