Positron annihilation study of equilibrium point defects in GaAs Dissertation zur Erlangung des akademischen Grades Dr. rerum naturlalium (Dr. rer. nat.) vorgelegt der Mathematisch-Naturwissenschaftlich-Technischen Fakultät (mathematisch-naturwissenschaftlicher Bereich) der Martin-Luther-Universität Halle-Wittenberg von Herrn Vladimir Bondarenko geb. am 15.02.1978 in Sumy, Ukraine Gutachter: (1) Prof. Dr. R. Krause-Rehberg (2) Prof. Dr. U. M. Gösele (3) Prof. Dr. P. Masher urn:nbn:de:gbv:3-000006446 [http://nbn-resolving.de/urn/resolver.pl?urn=nbn%3Ade%3Agbv%3A3-000006446] Halle(Saale), November 2003 verteidigt am 30.01.2004 Table of contents 1.Introduction ____________________________________________________ 1 2. 3. Thermodynamics of native point defects in GaAs_____________________ 3 2.1 GaAs system at melting point _____________________________________ 3 2.2 Defects chemistry in GaAs________________________________________ 5 2.3 Tan model and Fermi-level effect __________________________________ 7 2.4 Quantum mechanical calculations _________________________________ 9 2.5 Electrical compensation in n-type GaAs ___________________________ 11 Experimental methods _________________________________________ 13 3.1 3.1.1 3.1.2 3.2 3.2.1 3.2.2 4. Positron annihilation lifetime spectroscopy _________________________ 13 Physical background of positron trapping ________________________________ 13 Measurement principle and trapping model ______________________________ 14 Temperature dependence of positron trapping in semiconductors ______ 16 Theory ___________________________________________________________ 16 Model of positron trapping for experimental data fitting ____________________ 21 3.3 Coincidence Doppler-broadening spectroscopy _____________________ 24 3.4 Procedure of positron annihilation measurements ___________________ 26 3.5 Other methods ________________________________________________ 27 Vacancy formation in n-type silicon-doped GaAs ___________________ 29 4.1 Introduction __________________________________________________ 29 4.2 Heavily silicon doped GaAs ______________________________________ 31 4.2.1 4.2.2 4.2.3 Experimental ______________________________________________________ 31 Defect identification by means of positron annihilation _____________________ 31 Model of the compensation mechanism _________________________________ 33 4.3 Influence of dislocations on the lateral distribution of SiGaVGa complexes in Si-doped VGF GaAs wafers ___________________________________________ 35 4.3.1 Experimental details ________________________________________________ 36 4.3.2 Correlation between photoluminescence and positron annihilation investigations of silicon doped VGF GaAs ___________________________________________________ 37 4.3.3 Lateral variation of the compensation degree in VGF GaAs:Si _______________ 41 4.4 4.4.1 4.4.2 4.4.3 4.5 Identification of the 0.95 eV luminescence band in VGF GaAs:Si ______ 44 Experimental ______________________________________________________ 44 Cathodoluminescence spectroscopy ____________________________________ 45 Defect identification by positron annihilation _____________________________ 47 Discussion: defects formation in VGF GaAs:Si______________________ 49 5. Vacancy formation in semi-insulating and silicon-doped GaAs under equilibrium conditions_____________________________________________ 51 5.1 Experimental__________________________________________________ 51 5.2 Defects detected by PALS in annealed GaAs________________________ 53 5.2.1 5.2.2 5.2.3 5.3 5.3.1 5.3.2 5.3.3 5.3.4 6. Si-doped GaAs_____________________________________________________ 53 Undoped semi-insulating GaAs________________________________________ 54 Reproducibility of results for annealed SI GaAs ___________________________ 55 Defect identification in annealed n-type and SI GaAs ________________ 59 Identification of vacancies____________________________________________ 59 Identification of shallow traps in undoped annealed GaAs ___________________ 62 Charge state of the VAs complex _______________________________________ 64 Gibbs free energy of VAs formation_____________________________________ 66 Defects study in intentionally undoped VCz-grown GaAs _____________ 67 6.1 Growth method________________________________________________ 67 6.2 Carbon controlled growth _______________________________________ 69 6.3 Influence of the melt stoichiometry and unintentional doping on vacancy formation___________________________________________________________ 71 6.4 6.4.1 6.4.2 6.4.3 Results of PALS measurements __________________________________ 73 Semi-insulating GaAs _______________________________________________ 73 p-type GaAs_______________________________________________________ 75 n-type GaAs_______________________________________________________ 77 6.5 Validity of positron annihilation for determination of vacancy concentration _______________________________________________________ 79 6.6 7. On the temperature dependence of positron trapping in GaAs _________ 82 7.1 GaAs:Si vs GaAs:Te____________________________________________ 83 7.2 Positron trapping in GaAs doped with Si and Te simultaneously _______ 85 7.2.1 7.2.2 7.2.3 7.3 8. Summary _____________________________________________________ 80 Experimental ______________________________________________________ 85 Results of temperature-dependent PALS measurements _____________________ 86 Discussion ________________________________________________________ 87 Systematization of results _______________________________________ 89 Summary____________________________________________________ 93 References ______________________________________________________ 95 Eidesstattliche Erklärung Curriculum Vitae Acknowledgments
© Copyright 2026 Paperzz